IMPLEMENTATION AND SIMULATION OF MC68HC11
MICROCONTROLLER UNIT USING SYSTEMC
FOR CO-DESIGN STUDIES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CUMHUR ERKAN TUNCALI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN
THE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2007

Approval of the Thesis

IMPLEMENTATION AND SIMULATION OF MC68HC11
MICROCONTROLLER UNIT USING SYSTEMC
FOR CO-DESIGN STUDIES

Submitted by CUMHUR ERKAN TUNCALI in partial fulfilment of the requirements
for the degree of Master of Science in Electrical and Electronics Engineering by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. ismet Erkmen
Head of Department, Electrical and Electronics Eng., METU

Prof. Dr. Murat Askar
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Hasan Giran (*)
Electrical and Electronics Engineering, METU

Prof. Dr. Murat Agkar (**)
Electrical and Electronics Engineering, METU

Assist. Prof. Dr. Clineyt Bazlamacci

Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Gézde Bozdagi Akar
Electrical and Electronics Engineering, METU

M.Sc. Lokman KESEN
ASELSAN

Date:

(*) Head of Examining Committee
(**) Supervisor

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. | also
declare that, as required by these rules and conduct, | have fully cited and
referenced all material and results that are not original to this work.

Name, Last name : Cumhur Erkan Tuncali

Signature

ABSTRACT

IMPLEMENTATION AND SIMULATION OF MC68HC11
MICROCONTROLLER UNIT USING SYSTEMC
FOR CO-DESIGN STUDIES

Tuncali, Cumhur Erkan

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Murat Agkar

December 2007, 127 pages

In this thesis, co-design and co-verification of a microcontroller hardware and
software using SystemC is studied. For this purpose, an MC68HC11
microcontroller unit, a test bench that contains input and output modules for the
verification of microcontroller unit are implemented using SystemC programming
language and a visual simulation program is developed using C# programming
language in Microsoft .NET platform.

SystemC is a C++ class library that is used for co-designing hardware and

software of a system. One of the advantages of using SystemC in system design

is the ability to design each module of the system in different abstraction levels. In
this thesis, test bench modules are designed in a high abstraction level and

microcontroller hardware modules are designed in a lower abstraction level.

At the end, a simulation platform that is used for co-simulation and co-verification
of hardware and software modules of overall system is developed by combining
microcontroller implementation, test bench modules, test software and visual
simulation program. Simulations at different levels are performed on the system in
the developed simulation platform. Simulation results helped observing errors in
designed modules easily and making corrections until all results verified designed
hardware modules. This stuation showed that co-designing and co-verifying
hardware and software of a system helps finding errors and making corrections in
early stages of system design cycle and so reducing design time of the system.

Keywords: SystemC, MC68HC11, Microcontroller Simulator, Hardware and

Software Co-design, SystemC Visual Simulation Tool.

0z

BUTUNLESIK TASARIM CALISMALARI ICIN
MC68HC11 MIKRODENETLEYICISININ SYSTEMC KULLANILARAK
GERCEKLESTIRILMESI VE SIMULASYONUNUN YAPILMASI

Tuncali, Cumhur Erkan
YUksek Lisans, Elektrik ve Elektronik Mihendisligi B6Iima

Tez Yoneticisi: Prof. Dr. Murat Askar

Aralik 2007, 127 sayfa

Bu tezde, bir mikrodenetleyicinin donanim ve yaziliminin SystemC kullanilarak
bitinlesik tasarim ve bitlnlesik dogrulamasi incelenmistir. Bu amagla, SystemC
programlama dili kullanilarak, bir MC68HC11 mikrodenetleyici (nitesi,
mikrodenetleyici Unitesini dogrulamak igin giris ve ¢ikis moddlleri iceren bir test
Unitesi ve Microsoft .NET platformunda C# programlama dili kullanilarak bir gérsel

similasyon programi gelistirilmistir.

SystemC, bir sistemin donanim ve yaziliminin bdtlnlesik tasariminin yapilmasi

icin kullanilan bir C++ sinif kitiphanesidir. Sistem tasarimlarinda SystemC

Vi

kullaniminin avantajlarindan birisi, sistemin her modilini farkl soyutlama
seviyelerinde tasarlama imkanidir. Bu tezde, test modiilleri yiksek bir soyutlama
seviyesinde, mikrodenetleyici donanimi modiilleri ise daha duslk bir soyutlama

seviyesinde tasarlanmistir.

Neticede, gerceklestiriimis mikrodenetleyici, test moddlleri, test yazilimi ve goérsel
similasyon program birlegtirilerek, bitliin sistemin donanim ve yazilm
moddullerinin bltdnlesik simllasyon ve bitlnlesik dogrulamasini yapmak igin
kullanilan bir simidlasyon platformu olusturulmustur. Gelistirilen similasyon
platformunda, sistem Uzerinde farkl seviyelerde simulasyonlar uygulanmigtir.
Simdlasyon sonuglari, tim sonuglar tasarlanan donanim modiillerini dogrulayana
dek tasarlanan modiillerdeki hatalar kolaylikla gérmeye ve dizeltmelerin
yapiimasina yardimci olmustur. Bu durum, bir sistemin donanim ve yaziliminin
bitlnlesik tasarim ve bitlnlesik dogrulamasinin, sistem tasarim sirecinin erken
safhalarinda hatalari bulmaya, dlzeltmelerin yapilmasina ve bdylece sistem

tasarim sdresinin diismesine yardimci oldugunu géstermistir.

Anahtar Kelimeler: SystemC, MC68HC11, Mikrodenetleyici Similatéri, Donanim
ve Yazihm ButlUnlesik Tasarimi, SystemC Gérsel Simulasyon Araci

Vii

To My Family

viii

ACKNOWLEDGEMENTS

The author would like to express his deepest gratitude to Prof. Dr. Murat Askar for
his guidance, encouragement and unlimited patience throughout this thesis work.

The author would also like to thank his colleagues in BOTT for their
encouragement and support.

Finally, the author would like to express his special thanks to his family for their
great support during this thesis work.

TABLE OF CONTENTS

LAY S I Y O iv

(7O Vi

ACKNOWLEDGEMENTSot e e e e iX

TABLE OF CONTENTS ...ttt e e e e e e enaee e X

LIST OF FIGURES ..ottt e et e e e eee e e emneee e Xii

LIST OF TABLES ...ttt ettt ettt e e et e e e s enee e e e ennaeaeenes Xvi

LIST OF ABBREVIATIONS ... XVii

CHAPTER

1. INTRODUGTION ..ottt et e et e e e e et e e eneeeeeennes 1
2. USING SYSTEMC FOR HARDWARE / SOFTWARE_CO-DESIGN AND

CO-VERIFICATION ...ttt et e e 7

2.1 Need for Hardware / Software Co-design of Systems 7

2.2 Using SystemC for Co-aeSignccuuveeiirie e 8

2.3 Development Environment for SystemC.........ccccoooiiiiiiiiiinie 11

3. M68HC11 FAMILY OF MICROCONTROLLER UNITS ... 16

3.1 General DeSCHPHIONooiiii i 16

3.2 Operation Modes of MCB8HCTT ..., 19

3.3 On-Chip Memory SYStemMSc.oieeiiiiie e 20

3.4 Central Processing Unit (CPU)......cccceiiiiiiiiiiieie e 22

3.5 Addressing MOAEScooueiiiiiiieieiicee e 25

3.6 Parallel Input / Output (I/O) .eeeeeeeee e 26

3.7 Synchronous Serial Peripheral Interface (SPI)ccccceiviiieieenneen. 31

3.8 Asynchronous Serial Communications Interface (SCI).................... 33

3.9 Main Timer and Real Time Interrupt........cccoooviieiieiiiieeees 35

3.10 Pulse ACCUMUIALON ... 36

4. DESIGN OF MC68HC11 MICROCONTROLLER MODEL

USING SYSTEMO ...t e e 37

4.1 MC68HC11 SystemC Model Internal Structureccccceeeeeennies 38

4.2 CPU Controller UNitceeiiriiiieeee e 40

G T O [o o] I 11V o 1) SR 45

4.4 Arithmetic and Logic Unit (ALU) ... 47

4.5 RegISter File.... .o 56

4.6 Address Bus Controller...........ccccoeeiiiiiiiiiiie e 60

4.7 Handshake I/O MOAUIEoiiiiiieee e 63

4.8 TiMer SYSIEM ...t e 64

49 Serial Communications Module..........cccooiiiiiiiiiii e 67

410 Read Only Memory (ROM).....coooiiiiiiiiiiee e 69

411 Random Access Memory (RAM) ... 71

412 Electrically Erasable Programmable ROM (EEPROM).................... 73

413 VLSI Implementation of SystemC Modulesccccceeeiiieeeenenens. 75

5. VISUAL SIMULATION PLATFORMooiiiiiieiieee et 77

5.1 Structure of Visual Simulation Platform ... 77

5.2 TeStBeNCR.....eeiiiiii 78

5.3 Features of Visual Simulation Software..........ccccccoiiiiiiiini 79

6. CONCLUSIONS ...t e e e e e e e e e e enees 94

REFERENGES...... .ottt ettt e et e e e et e e e s snnee e e eneeeeeeenees 98
APPENDIX

A. MBBHCT1 INSTRUCTION SET ..ot 100

B. MICROCONTROLLER TEST CODE.........coiiiiiiiiie e 109

B.1 Instructions and Addressing Modes Test Program..........cccc.ccu.e.e. 109

B.2 Execution of Test Program on Original MC68HC11 115

B.2. Serial Port Test Program ..o 119

C. VISUAL SIMULATION TOOL USER GUIDE-........ccociiiiiiiiieeeieee e 120

Xi

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:

Figure 4.6:

LIST OF FIGURES

A Typical Example of SOC Systems.ccoeeiiiiiiiieee 7
Design FIow COMPAriSON........cooiiiiiieiiiee e 10
“Open Workspace” Menu ltem in Microsoft Visual C++cceeeennees 12
Building SystemC Librarycooooioiiiiee e 12
Enabling Run-Time Type Information ..o 13
Including SystemC Library to Library Listcccccoeniiiiiiiicnnne 14
Inserting Signals in GTKWaVe.coocoiiiiiieie e 15
MCB8HCT11E9 Pin ASSIgNMEeNts......cccovoieiiiiiiiieeseie e 17
Block Diagram of MCB8HCTTEY ..o, 18
Memory Map of MCBBHCTTES........coiiiiiiiiee e 20
CPHA Equals Zero SPI Transfer Formatcccoeeieeeiiiieneenenenn. 32
CPHA Equals One SPI Transfer Format..........ccccooviiieiiiiiiieeee. 33
Start Bit Reception ... 34
Internal Structure of MC68HC11 SystemC Model.............ccccceee... 39
Datapath of MiCrOproCEeSSOroovuviiiiiiiieiiiiiee e 40
Block Diagram of CPU Controller ... 41
Internal Clock Cycles of a Bus CycCle........cuuveiiiiiiiii 41
Clock Divider Symbolcoooiiiiiiieeeeee e 45
Internal Clock Signals of MCB8HCTTcociiiiiiiieeeeee e 46

Xii

Figure 4.7:
Figure 4.8:

Figure 4.9:

Figure 4.10:
Figure 4.11:
Figure 4.12:
Figure 4.13:
Figure 4.14:
Figure 4.15:
Figure 4.16:
Figure 4.17:
Figure 4.18:
Figure 4.19:
Figure 4.20:
Figure 4.21:
Figure 4.22:
Figure 4.23:
Figure 4.24:
Figure 4.25:
Figure 4.26:
Figure 4.27:

Figure 4.28:

Resulting Waveforms of Clock Divider Simulationc.c....... 46
Arithmetic and Logic Unit Symbol...........ccccoiiiiiiiiieeee, 47
ALU BIOCK Diagramcccoooiiiiieieee et 48
Arithmetic and Logic Unit Test Resultscceeeeieiiiiiiiiiennn. 51
ALU Addition Test Waveforms..........cccovveeviiiiiiee e 52
ALU Increment Test Waveformsccocovviiiiece e, 52
ALU Subtract Test Waveforms..........cccocveeieiieiiceeeeeee e 52
ALU Decrement Test Waveformscccccvveeeiecee e, 53
ALU AND Operation Test Waveforms.........cccceeeiieeeniceeeenenenn. 53
ALU OR Operation Test Waveforms.......cccocccceeeiieeeniieeeeeenn. 53
ALU XOR Operation Test Waveforms.........cccceeeeiieeeniceeeeeenenn. 54
ALU Complement Test Waveforms........cccoooeeeiiiie v, 54
ALU Negate Test Waveformscoevveiiiiiiiciieiieeeeeeee 54
ALU Arithmetic Shift Right Test Waveforms..........ccccovcvieiineen. 55
ALU Arithmetic / Logical Shift Left Test Waveforms.................... 55
ALU Logical Shift Right Test Waveformsccccccvveviivineennnne 55
ALU Rotate Left Test Waveformsccccovviieeiiiieiiiieee 56
ALU Rotate Right Test Waveforms ..o 56
Register File Symbol.........cooooiiiii e 57
Register File Test Waveforms.........cccuveeiiiiiiii e, 58
Register File Test Console QUIPULSccooeviiiiiiiiiiiieiieiieeeee, 59
Address Bus Controller Symbolccccoeviiiiiiieeeeee e, 60

xiii

Figure 4.29:
Figure 4.30:
Figure 4.31:
Figure 4.32:
Figure 4.33:
Figure 4.34:
Figure 4.35:
Figure 4.36:
Figure 4.37:
Figure 4.38:
Figure 4.39:
Figure 4.40:
Figure 4.41:
Figure 4.42:
Figure 4.43:
Figure 4.44:

Figure 4.45:

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:

Figure 5.5:

Address Bus Controller Test ReSUIScccovciiiiiiiiiiiiiieeeee 61
Console Outputs of Address Bus Controller Test.......ccccceeeeneeee. 62
Handshake 1/0O Module Symbol ..o 63
Handshake 1/0O Module Block Diagramcccccooeeiieeeereeniinnennee. 64
Timer System Symbol..........ooiiii e 65
Timer System Block Diagram.........cccceeeriiiiniiiie e 66
Serial Communications Module Symbol...........ccccveiiiiiiiiinenne 67
Serial Communications Module Block Diagram............cccccccceenn. 68
ROM SyMDBOI ... 69
Console Output of ROM TeSt.......oiiiiiiiiieiieee e 70
Resulting Waveforms of ROM Test.......cccocveiiiiiiiieeeeee e 70
RAM SYMDOL.....oiiiiiiiieie e 71
Waveforms of RAM Test ReSUMSccovveriieiiie e, 72
RAM Test RESUIS.....coooiieieeeiee e 72
EEPROM SymDOlceiiiiiiiiiiieie e 73
EEPROM Write / Read Test ReSults..........cccooceeeieeiiiieneeee, 74
EEPROM Clear / Read Test ResSults........cccooovvieeiiiiieiiiiieee e 75
Visual Simulation Platform...........ccociieiiiiie e 78
Main Window of Visual Simulation Software.............ccccocovevineennnn. 81
68HC11 Assembly Code Editor Windowccevvvviieiiiiiiiiieinennn.. 82
Machine Code Generator WindoW...........ccoovieeiiiiiee e 83
Test Environment Region of Simulation Programcccco....... 85

Xiv

Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:
Figure 5.10:
Figure 5.11:
Figure 5.12:
Figure 5.13:
Figure 5.14:
Figure 5.15:
Figure C.1:
Figure C.2:
Figure C.3:
Figure C.4:
Figure C.5:
Figure C.6:
Figure C.7:
Figure C.8:
Figure C.9:

Figure C.10:

8-bit Binary Switch Configuration.............cccccoiiiii e, 86
Push Button Pulse Generator Configuration...........ccccoccceeeiiienen. 87
Serial Monitor Configurationccccevviireniee e 88
Test Bench Configuration Window ... 89
Running Simulation...........ooo e 90
Instruction and Special Function Registers Information............... 91
Internal Registers Information ..., 92
RAM Content WiNAOW........cccueeiiiiiiiieeiee e 92
ROM Content WindOWcccoouiieiiieiieee e 93
EEPROM Content WindOWcoovieiiiienieeeeee e 93
Main Window of Visual Simulation Software............cccccoeevieennnn. 120
Code Ediitor EXample....cc.ooiiiieieiee e 121
Code Generator EXample.......ceviiiiiiiiiiieeee e 122
Test Environment EXampleooevoiiiiiiiiiiieeee e 123
Test Bench Port Configuration Example............cccceviiiieiiiienene. 124
8-bit Binary Switch Configuration.........c...occoeeeiioiii i 125
Push Button Pulse Generator Configuration........c...ccoecciiieeeinenn. 125
Serial Monitor Configurationccccevviiie e 126
Running Simulationoooeiee e 126
Simulation Results of Serial Monitor Module..............ccccceevnneee. 127

XV

Table 3.1:

Table 3.2:

Table 3.3:
Table 3.4:

Table 3.5:

Table 3.6:

Table 4.1:

Table 4.2:

Table 4.3:

Table A.1:

Table A.2:

Table A.3:

LIST OF TABLES

Internal Registers of MBBHC11 CPU ..o, 23
Condition Codes Register.........ccvviieiiiiiiiiiee e 24
Summary of POrt APINS ..o 27
Summary of Port B PiNS.......coooiiiie e 28
Summary of Port C PinScoooiiiie e 29
Summary of Port D PinScoooieiiiiiiiiee e 30
CPU StateS.....eeeeeee et e 43
ALU Commands and Meaningsccceeeeeiriieiiieeeiiiiiiieee e 49
Synthesis Results of ALU Module...........occoviiiiiiiiiiieeeeee 76
Information on OPerandsooiiieeiiii i 100
Information on Condition Codes..........ccervviriieiiiiiieniieeee s 101
MB8BHC11 Instruction Setcevviiiiiiiiiiie e 102

XVi

ALU

ASM
ASIC
CCR
CISC
Co-design
CPU
EDA
EDIF
EEPROM
FPGA
HDL

HW

IC

|IEEE

I/O

MCU
METU

Opcode

LIST OF ABBREVIATIONS

Arithmetic and Logic Unit

Assembly Language

Application Specific Integrated Circuit

Condition Codes Register

Complex Instruction Set Computer

Compound Design

Central Processing Unit

Electronic Design Automation

Electronic Design Interchange Format

Electrically Erasable Programmable Read Only Memory
Field Programmable Gate Array

Hardware Description Language

Hardware

Integrated Circuit

The Institute of Electrical and Electronics Engineers
Input / Output

Intellectual Property

Microcontroller Unit

Middle East Technical University

Operation Code

XVii

OSClI Open SystemC Initiative

PC Program Counter

SP Stack Pointer

SW Software

RAM Random Access Memory

RISC Reduced Instruction Set Computer
ROM Read Only Memory

RTL Register Transfer Level

SCI Serial Communications Interface
SPI Serial Peripheral Interface

SoC System on a Chip

SRAM Static RAM

VCD Value Change Dump

VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit

XViii

CHAPTER 1

INTRODUCTION

Today’s applications require complex electronic systems that contain multiple
modules. These modules can be sub-systems, application specific integrated
circuits (ASIC), microcontrollers and memory devices around central processing
unit (CPU). Collecting all elements of a system on a circuit board is getting harder
and more expensive as the system complexities increase. Developments in VLSI
technologies allow combination of all hardware and software of systems on a
single chip. Such a system is called “System On a Chip” (SoC). SoC designs allow
significant reduction in size, design time and cost of a system. The need for SoC
approach in system design by considering increased complexities and importance
of time-to-market is presented by Kahn A. in [1].

SoC designs have both hardware and software parts. In a traditional design
approach, hardware and software of a system are designed by different teams by
using different tools. After hardware and software designs are completed, a
prototype for system is produced where hardware and software are first brought
together. Overall system tests are performed after this stage in the design flow. If
design errors are discovered in these tests, hardware and software teams refine
their designs and new prototypes of the system are re-manufactured. This cycle
repeats itself until the system verification is successful. Prototype manufacturing
is generally time consuming and expensive. This situation results in significantly
increased design time and cost of the system. Compound design (co-design)
approach targets to solve this problem. In this approach, both hardware and
software of system are designed and verified together. Preliminary system tests

can be performed before prototypes are manufactured. Co-designing and co-
verifying hardware and software of a system reduces the number of errors that are
discovered after prototyping and the time-to-market period of a system.

Based on the requirements and the experience, system designers can use
different languages and approaches for co-design purposes. Schulz S. et al
proposed a model based specification approach for co-design [2]. SystemC,
SystemVerilog, Verilog, VHDL and OpenVera are some examples of design
languages. Each language has its own advantages and disadvantages over the
others. For example, it is generally difficult and time consuming task to use Verilog
as a high level system design language when compared to SystemC; however low
abstraction level Verilog designs may yield more area and performance efficient
systems. As a co-design approach, more than one language can also be used in a
design flow; however interfacing subsystems that are described in different
languages is difficult. Multi-language co-design approaches and interfacing
problems of subsystems in these approaches are discussed by Benmohammed M.
and Merniz S. in [3].

Among system design languages, ability of SystemC to model hardware and
software at different abstraction levels from transaction level to register transfer
level (RTL) makes it the best candidate for co-designing and co-verifying hardware
and software of a system using single language. IEEE Standard SystemC
language has been proposed as an ANSI standard C++ class library for system
and hardware design for use by designers and architects who need to address
complex systems [4]. SystemC is actually a class library which extends C++
language with new constructs for modeling hardware components. These
constructs can be listed as modules, ports, processes, events, interfaces and
channels. It has an event-driven simulation kernel that allows concurrency of
signals. Detailed information on SystemC language, its constructs, data types and
abstraction levels can be found in [4] and [5]. SystemC designs can be
synthesized to RTL by using electronic design automation (EDA) tools; however
not all SystemC constructs are synthesizable. A subset of SystemC language that

is suitable for synthesis is given in [6]. Celoxica Agility Compiler [7] provides a
SystemC system level synthesis tool. It outputs to RTL for synthesis tools like
Design Compiler and optimized Electronic Design Interchange Format (EDIF) for
Altera and Xilinx FPGAs. SystemCrafter SC [8] is another software tool that
synthesizes SystemC into RTL VHDL or Verilog for Xilinx FPGAs. Synthesis of
SystemC transaction level and register transfer level designs are presented in [9]
by Calazans N. et al and area comparisons are done between RTL SystemC
description synthesis and RTL VHDL descriptions. Results showed that, area of
hardware synthesized from SystemC is comparable with area of equivalent
hardware that is synthesized from VHDL. A 4-bit microprocessor is implemented in
VHDL and SystemC RTL as a case study and these implementations are
compared in terms of easiness of the design, functional simulations, logic
optimizations and timing analysis [10]. Their results showed that SystemC is more
efficient than VHDL in terms of verification, because SystemC simulations run

faster and development of test vectors are easier.

Intellectual property (IP) cores are hardware blocks that are designed using
languages like VHDL, Verilog and SystemC. Implementations and verification of
these cores are completed before they are delivered to customers. System
designers can reduce design and verification effort by using these pre-designed
and pre-verified IP cores in their system designs. IP providers deliver cores in soft
or hard forms. Soft IP cores are descriptions of hardware that are ready to
synthesis. Hard IP cores are already synthesized and ready to manufacture.
SystemC IP cores are available and being developed all over the world. Synopsis
Inc. provides SystemC models for the PowerPC processors and a broad range of
peripherals as a part of its System Studio product [11]. CoWare Model Library [12]
from CoWare Inc. provides a collection of SystemC IP models including ARM and
MIPS processors. Open source SystemC IP cores of USB1.1 function from
Usselmann R., an area improved DES coprocessor and MD5 hash algorithm from
Villar J. C. are available in [13]. Jonsson B. suggests a JPEG encoder SystemC
implementation in [14].

Several SystemC IP cores have been developed in Middle East Technical
University (METU). Implementations of industry standard 80C51 compatible 8-bit
microcontroller unit by Kesen L. [15], an 16-bit RISC based MSP430
microcontroller unit by Zengin S. [16], optimized reconfigurable Viterbi decoder by
Soézen S. [17], direct digital synthesis based function generator by Kazancioglu U.
[18], analog and mixed signal modeling for PIC 16F871 microcontroller unit by
Mert Y. M. [19] are theses on SystemC IP models previously completed in the
Electrical and Electronics Engineering Department of METU.

Companies and designers that have previously developed know-how and software
for a specific microprocessor want to use this microcontroller in their new SoC
designs. This situation have arisen the need for IP cores of industry standard
microprocessors and microcontrollers. Using IP cores of a microcontroller give
system designers the ability to use their past know-how on that microcontroller in
their new SoC designs and the flexibility to remove unnecessary peripherals of
microcontroller at hand and optimize its peripherals for target system or replacing
old peripherals with the ones that use new standards. For example an old serial
communications interface can be replaced with a modern interface such as USB
2.0 or Bluetooth. Developments in IC fabrication techniques may also allow
implementation of the new microcontroller core to operate at higher frequencies
than the original one.

The objective of this thesis is to make a synthesizable SystemC implementation of
a microcontroller that is instruction set and timing compatible with industry
standard MC68HC11 [20] [21] microcontroller with its peripheral devices and to
provide a powerful simulation platform for the implemented microcontroller with a
test bench and visual interface, using co-design capabilities of SystemC. With
today’s technology, hardware of the designed microcontroller unit can be
manufactured after synthesizing the developed SystemC model to HDLs using
electronic design automation tools. MC68HC11 is selected because it is widely
used in several applications; it has commonly required peripherals and its well
designed architecture makes it a good candidate for microprocessor architecture

for educational purposes. In this study, it is aimed to develop a user friendly
simulator interface for configuring and running SystemC simulations of
implemented system that consists of microcontroller hardware, software and test
hardware. The developed simulator is also responsible for presenting simulation
results in an easily understandable format. This architecture can be considered as
a complete design and verification environment for MC68HC11 where
microprocessor hardware and software can be tested before hardware prototypes
including peripheral components are manufactured. Main difference of this
simulation platform from microcontroller simulators is its usability as a
synthesizable hardware model of a microcontroller.

MC68HC11 microcontroller core and its peripherals are implemented in SystemC
platform using Microsoft Visual C++ 6.0. Developed core and peripheral devices
are designed to mostly comply with the original ones. When compiled with
appropriate flags for simulation purposes, implemented microcontroller takes
simulation options and provides some information on its internal workings to
outside world by using input and output files. It reads ROM and EEPROM contents
from input files and provides internal register values, memory contents, some of its
internal signals and operation states of microcontroller CPU in each clock cycle.
Analog to digital converter module of MC68HC11 is kept out of this thesis concept
because standard SystemC language does not support modeling of analog
hardware.

A configurable test bench which employs different input and output device
modules such as serial monitor, TTL oscillators, switches and seven segment
displays, is designed in a higher abstraction level than microcontroller core. This
test bench communicates with a visual simulation program, which is designed as a
part of overall simulation environment, using input and output files. It reads test
hardware configurations and port connections from input files and writes cycle
accurate simulation results to output files. Visual simulation program is developed
using C# language in Microsoft .NET platform and is responsible for user

interaction in order to configure simulation environment and present simulation

results.

In Chapter 2, using SystemC for co-design and co-verification purposes is studied.
SystemC language and its capabilities are explained without much detail and how

to set up a development environment for SystemC is described step by step.

Information on original MC68HC11 family of microcontroller units is given in
Chapter 3. Operation and addressing modes of its central processing unit, its

memory devices and peripherals are described briefly.

Chapter 4 explains the SystemC implementation of MC68HC11 microcontroller
unit and its peripherals. Each SystemC module is explained separately with its
structure. This chapter also presents test results of designed modules and overall

microcontroller unit.

Developed simulation platform and SystemC implementation of developed test
bench is explained in Chapter 5. This chapter also explains the link between
SystemC implementations and visual user interface part of the developed

simulation platform.

Finally in Chapter 6, conclusions of the work are presented and directions for

future work are suggested. References are presented for further reading.

CHAPTER 2

USING SYSTEMC FOR HARDWARE / SOFTWARE
CO-DESIGN AND CO-VERIFICATION

21 Need for Hardware / Software Co-design of Systems

Today’s SoC systems may be complex structures with multiple processors, ICs
and software. They may also contain other sub-systems. Different bus interfaces
connect on-chip devices and sub-systems. Figure 2.1 is presented as a typical
example of SoC systems.

-

Figure 2.1: A Typical Example of SoC Systems.

In a traditional design flow, hardware and software parts of the systems are
designed by different teams without much interaction between these parts. Design
teams targets to achieve given specifications. Each part has its own design flow.
After each team completes designs and a prototype of hardware is manufactured,
hardware and software are brought together and overall system tests are done.
Discovering design errors at this stage of overall system design flow causes large
amounts of money time to companies because design flow of problematic parts
should be repeated until overall system is verified. If design errors are discovered
in hardware, prototyping of hardware should be done again.

Competition in the market makes a pressure on companies to reduce time-to-
market periods and costs of the systems. In order to achieve shorter design
periods without any decrease in reliability of complex systems, modeling of overall
architecture and integration of hardware and software parts should be done in
early stages of design flow. Tests of embedded systems should be done before
manufacturing hardware prototypes. Co-design technique offers designing
hardware and software parts together starting from very early stages of overall
system design flow. These parts are in interaction with each other during almost
whole design flow and they are verified together before prototyping of hardware is
done. This minimizes number of errors that are discovered after prototyping.

2.2 Using SystemC for Co-design

SystemC is an open source system design language that is based on C++
language. It is actually an ANSI standard C++ class library which is developed for
hardware and system design. It is developed by Open SystemC Initiative (OSCI).
C++ language is inadequate for describing concurrent behavior of hardware and
lacks notion of time. SystemC extends C++ library for describing hardware by
providing data types for describing hardware and structure hierarchy. SystemC
has a simulation kernel which has a scheduler that synchronizes execution of

functions in accordance with time notion and event driven architecture of functions.

Verification of a system generally takes too much time, in most cases verification
period may be longer than design period. This is a handicap for reducing time to
market, so simulations should be done easily and in shorter times; test benches
should be developed in less time. In order to achieve these in complex systems,
design tool should allow high abstraction levels as it gets harder and more time
consuming to design everything in a system in register transfer level. SystemC has
a great feature that it allows designing systems in high abstraction levels. This is
called system level design. Using SystemC, a designer can start modeling overall
architecture at a very high level of abstraction and refine model by lowering
abstraction level of described parts. Using very high level abstractions and than
making refinements is more difficult and sometimes impossible in other hardware
description languages (HDLs). It is also possible to keep test benches at very high
level without refining them in order to reduce design time without affecting
reliability of tests.

SystemC is a great platform for making hardware / software co-design of systems.
Because it is a class library in C++, it inherits properties of C++ language. System
designer can design both hardware and software of system using same language
and making refinements on any part of the system does not affect rest of the
system. Co-verification of hardware and software can also be done using SystemC
during design time. Figure 2.2 shows comparison of traditional design flow with

SystemC co-design flow.

SOFTWARE

Functional Functional
Specification Specification

)

Architectural Architectural
Planning Planning

A}

System Prototype

Production

Figure 2.2: Design Flow Comparison

10

HARDWARE /
SOFTWARE

Functional
Specification

N2

Architectural
Planning

N2

HW / SW
Co-design

N2

HW | SW
Partitioning

N2

System
Verification

VHDL Symthesis

System Prototype

System Testing

2.3 Development Environment for SystemC

In order to start making designs using SystemC and viewing simulation result
waveforms, some tools are needed. First of all SystemC library source should be
downloaded. Downloading documentation is also recommended. SystemC is open
source and freely available at Open SystemC Initiative web site
“www.systemc.org”. During this thesis work, SystemC library version 2.1.v.1 is
used. After downloading SystemC library source, it should be compiled to
generate a library file for design environment. Any C++ compiler can be used to
generate library file. Microsoft XP is used as operating system and Microsoft
Visual C++ 6.0 is used for C++ compilation in this thesis work. Steps for compiling
source of SystemC library in Microsoft Visual C++ 6.0 are presented below.
SystemC documentation can be used as a guideline for library creation process for

different development environments.

SystemC library compilation steps:

1. Downloaded source files come in an archive file. This archive should be

extracted to any folder using a suitable archive manager program.

2. In Microsoft Visual C++, “Open Workspace...” menu item under “File”
menu should be clicked and “systemc.dsw” file should be selected by
browsing into “msvc60\SystemC” directory which is under the directory
where library source files are extracted.

11

*« Microsoft Visual C++

File Edit Yiew Insett Project Build Tools ‘window

J Ol Mew... Ctrl+h Lj 2 | a2 HE_E
=

Qpen... Chrl+O BiE

Save Workspace

Close Warkspace

Figure 2.3: “Open Workspace” Menu ltem in Microsoft Visual C++

3. Workspace file is adjusted for compilation of SystemC library in
Microsoft Visual C++. Selecting “Build systemc.lib” under “Build” menu
is enough for compilation of the library.

‘. SystemC - Microsoft Visual C++

“ Filz Edit Wiew Insett Project |Build Tools wWindow Help

J 3 | = LG ‘ ¥ £ 2 Compile CEH+FT

Enuils

; Resbuild Al
l SystemC classes:
..... YElEML, Classes: Batch Build. ..
Clean
Start Debug 3

Debugger Remote Connection. ..

Execute CLrl4+FS

Set Ackive Configuration, ..
Configurations. ..

Frofile. ..

Figure 2.4: Building SystemC Library

12

For creating a SystemC project, a new empty Win32 console application should be

created first. After creating a new project, some adjustments should be done on

this project options for SystemC compilation. Below are steps of creating a

SystemC design in Microsoft Visual C++. Compiler documentation can be referred

for better understanding.

SystemC project creation steps in Microsoft Visual C++:

1. A new, empty C++ project is created by using “New” menu item under

“File” menu and selecting “Win32 Console Application” option.

2. “Enable Run-Time Type Information (RTTI)” checkbox should be

checked by selecting “C++ Language” category in “C/C++" tab under

“Settings” menu item of “Project” menu. This is shown in Figure 2.5.

Project Settings

Settings For: {4/in32 Debug

General | Debug C/C++ | Lirik. | Resourc EE

B AdiBusContr Test
ClkGeneratorT ext
CpualLU Test

[ataBusChtr Test
Experimentk.it
FrogramT estCreator
R Test
RegizterFileT est
ROM Test

k4

[R

Categary: |E++ Language j Reset

@Jle Run-Time Type [nformation [RTTI

Painter-to-member reprezentation
Representation method;
| Best-Caze Almays * j

| [

I+ Enable exception handling

[Disable construction displacements

Project Optionz:

Mnologo MLd A3 SGm JGR AGH 2L /Od A
" DEBUG" /D" _COMSOLE" /D "_MBCS"

ak.

"C:hSystemChapsternc-2. 1 w1 e /D "wWIN3IZ" /D

Figure 2.5:

Enabling Run-Time Type Information

13

3. For using SystemC data types and functions, SystemC library should
be used in link step. Under “Projects” menu and “Settings” menu item,
“Link” tab should be selected and “systemc.lib” should be added to the
“Object / library modules” list. This is presented in Figure 2.6 below.

Project Settings

Settings For: |Win32 Debug ﬂ General | Cebug | C/AC++ Link | Fesourc EE
-8 AdBusCaontr Test
Cat : -
+ ChkGeneratorT est alegary |General J Reset
+ CoudLU Tes! COutput file name:
+ DataBusCrhitr Test e BT
+ Ewperimentkit | ebugssc_bonclT.exe
* ProgramT estCreator ObjectAibrany modules:
-2 RAM Test e — . —
¥ RegisterFieT sst |.I|b oleaut32 lib uuid.ib odbe 32 lib UdbccpSZ.Iﬁ systemc.lib])
. HDMTBSt v Generate debuginfo [Ignore all default libraries
+ zc B

Iv Lirk incrementally [Generate mapfile

I~ Enable profiling

Froject O ptions:

kermeld2 lib uzerdZlib gdid2 lib winspool lib ~
comdlg32. lib advapi2. lib thell32.lib ole3Z lib
oleaut32 ik uuid ib odbe32. Db odbecp32. lib “

ak. | Cancel

Figure 2.6: Including SystemC Library to Library List

4. Include file and library directory search paths should be added to
project. For doing this, “Settings” menu item is selected under “Project”
menu. Under “C/C++" tab, “Preprocessor” category is selected and path
of “src” directory which is in extracted SystemC library directory is
entered in text field into area labeled “Additional include directories”.
Path to SystemC library which is under “msvc60\systemc\debug”
directory in extracted SystemC library directory is entered in “Additional
library path” text box under “Input” category in “Link” tab.

14

5. Project settings are completed for SystemC compilation. After adding
source files to created project and developing SystemC model, “Build*
menu can be used for generating executable program file of developed
model.

If SystemC code is written appropriately for value change dump (.vcd) file
generation, which is achieved by using “sc_trace” method of SystemC library,
executable file will generate a “.vcd” file (also called trace file) that contains
simulation waveforms of selected signals. There are different programs that can
be used to view these trace files. In this thesis “GTKWave” application is used for
this purpose. In order to see waveforms in GTKWave, “Search -> Signal Search
Tree” menu should be accessed and signals that are wanted to be shown on
screen should be selected and inserted. Figure 2.7 shows an example screenshot

from GTKWave for inserting signals.

£] F Signal Search Tree g@|@ g@;@
:File Edit Search Time Markers || = iy I

iVCD loaded successfully. -A--Zuom UE:L ke : hlasimurn Tir
{l[18] facilities found. | m0_PH2-Clk From:[0 sec 2999750 ns

[11494] regions found. [m1_AS J To [2985750 ns Current Time
il FAddress_ BUS[15:0] |

| ar 1 ps
|2 Signals-- WWaves- 5 _A|U_A[?:D]

! Alu_B[7:0] 3
Falu B MuxSelect
FAlu_CCR[7:O]
Alu_ChWD[4:0]
FAu_CY
FAlu_InstrType
F&lu_Result[7:0]

I Data_BUS[7:0] =
- hdern_ R

- RAM_DataCut[7:0]

Time A

1/

! Appendl. Insert | Replace"‘ Exit |

il Add selected signal hierarchy after last highlighted
-i_“_‘_“]_—J___/_;J-__!_‘_“‘—_J | signal on the main window. - -

Figure 2.7: Inserting Signals in GTKWave.

15

CHAPTER 3

M68HC11 FAMILY OF MICROCONTROLLER UNITS

MC68HC11 microcontroller is briefly explained in this chapter with its core and
peripheral functions. Reader can refer to M68HC11 E Series datasheet [20] and
M68HC11 reference manual [21] for more detail.

3.1 General Description

M68HC11 is a family of 8-bit general purpose microcontroller units. Members of
this family differ from each other with small differences in their components. In this
thesis a SystemC design best matches to this microcontroller unit family members
is done. MC68HC11E9 microcontroller unit which is a M68HC11 family member is
chosen as a model. MC68HC11E9 is chosen because it has most of the
peripherals available in the family, it is used in Motorola Semiconductors
Evaluation Board (EVBU) which is used widely for educational purposes and vast

amount of information on this model is available.

There are different packaging options for different members of M68HC11 family of
microcontroller unit. For MC68HC11E9 52-pin plastic leaded chip carrier (PLCC),
52-pin windowed ceramic-leaded chip carrier (CLCC), 64-pin quad flat pack
(QFP), 52-pin thin quad flat pack (TQFP) and 56 pin shrink dual in-line package
(SDIP) options are available. Most of the pins serve at least two different functions.
Pin assignments for 52-pin PLCC package option of MC68HC11E9 are presented
in Figure 3.1.

16

JE 2EZF tog
% @ x £ & I 2 o= X
EE LGS BFrOIsEd
o I e Y e I e Y e Y e S e N e N e N e Y e Y e N |
FEETT @S 23 %5)
¥TaLOa - 46 [1 PES/&NS
PCo/ADDRODATAN [@ 45 [TPE1/AM1
PC1/ADDR1DATAT [10 44 [T PE4/ 8N4
PC2/ADDR2DATA2 [11 43 [TPEQ/AND
PCa/ADDADATAS O 12 42 [PEC/ADDRS
PC4ADDA4DATA4 [12 41 [IPBVADDRO
PCsADDASDATAS O 14 MEsHC11 E SERIES 40 [I PE/ADDR10
POSADDRGDATAS [15 a0 [] PEYADDAN
PCT/ADDR7DATAT O 16 38 [I PB4 ADDA12
RESET [{ 17 47 ([PES/ADDA1A
RV [18 36 [T PBE/ADDR14
TR [19 a5 [{ PETADDRA1S
POl [20 a4 [T PaICE
EEEEEEEEEEREERED
= I | NNy Ny N N SN SN S | S —
S0 8B EGLG6G050 O
E = #£ G 2o o292 =
= = [o =+ = g =T
od = =g = g S o o
a o 2 e 5 58 2
o o 'E = W = 8
e g xE o
%
o

Figure 3.1: MC68HC11E9 Pin Assignments

MC68HC11E9 can operate at external clock frequencies up to 8 MHz which
generates up to 2 MHz of internal bus clock. It has peripheral functions including
an 8-channel A/D (analog-to-digital) converter which has 8-bits of resolution, an
asynchronous serial communications interface (SCl), a synchronous serial
peripheral interface (SPI), a 16-bit, free running main timer system with three
input-capture lines, five output compare lines and a real-time interrupt function. An
8-bit pulse accumulator subsystem that can count external events or measure
externally applied signal periods is also included in MC68HC11E9. On-chip
memory systems of MC68HC11E9 include 8 Kbytes of read-only memory (ROM),
512 bytes of electrically erasable programmable ROM (EEPROM) and 256 bytes
of random access memory (RAM). These peripherals and on-chip memory can be
seen on block diagram of MC68HC11ES9 in Figure 3.2

17

MODAS MODE

R Verpy XTAL EXTAL E TR XRGNppg- RESET
050
NTERRUPT
WODE CONTROL
LOGI ROM CR EPROM
CLOCK LOGK A
:
o | TMER EEPRCIM
5 | SYeTEM E MEEHC4 CPU [SEE TABLE)
=
|| = RAM
o E {SEE TABLE)
g [
SERIAL SERIAL
2 B RS | ADORESSDATA = || PERPHERAL || COMMUNICATION L\f:-n
3 & = || |NTERFACE INTERFACE v
2 = Ji#lh#llli Y} 5Pl G I’
g 2 YYYYYYYYY YYYYYYYY Y Y =
| B STACBE MO HINDGHIE 0 <8 |lae -y,
A = FARALLEL 11D = EH%: 2 iy
AN AAAAAAAL IYY Y T AD CONVERTER
T Yy 'y
YYVVVYY) LAR AAAAAAAL
yvyy YYryYm CONTRCL CONTROL
| FORT & | | FORTE | FORTC PORTD ‘ FORTE |
A L N L L R
- géiégé%% EEPgedes Eb EEfee REOIDPRE
2233 SECECEST Bagagags
& PEOREROE
Figure 3.2: Block Diagram of MC68HC11E9

18

3.2 Operation Modes of MC68HC11

MC68HC11 microcontroller unit has two main operation modes. These are:

e Single-chip operation mode

e Expanded operation mode

Each of these main operation modes also has two variations. These variations are

called normal and special variations. All operation modes are listed below:

e Normal single-chip operation mode
e Special bootstrap mode (special variation of single-chip mode)
e Normal expanded operation mode

e Special test mode (special variation of expanded operation mode)

In normal single-chip mode of operation everything that will be accessed using
address and data buses is assumed to be contained in microcontroller chip. There

are no external memory elements or peripherals in this mode of operation.

Normal variation of expanded operation mode is used for accessing external
memory and/or peripherals. In this mode of operation, address/data bus is
multiplexed and available on port B and port C pins. Normal expanded mode of

operation has two additional control pins.

19

Special bootstrap mode is used for downloading programs into on-chip RAM at
startup using asynchronous serial communications interface (SCI). Special test
mode generally used for factory testing of microcontroller.

3.3 On-Chip Memory Systems

MC68HC11 microcontroller unit includes 512 bytes of random access memory
(RAM), 12 Kbytes of program (user) read-only memory (ROM), 192 bytes of
bootloader ROM and 512 bytes of electrically erasable programmable ROM
(EEPROM). Other members of M68HC11 family may have different sizes of RAM,
ROM and EEPROM memories. ROM or EEPROM memories are not included or
disabled in some variations of microcontroller units in M68HC11 family. Memory
map of MC68HC11E9 is presented in Figure 3.3.

000 Q000
) T _\\ 512 BYTES FAM
E;{T EiT | mFF
#1000 1000
¥ ¥ —. 54-BYTE REGISTER BLOCK
BT EXT _ 10aF
—
l } e Bs00 |512 BYTES EEPROM
FBe00 BTFF
A 4 7 [BRm BOOT /" [BFCo | SPECIALMODES
i BT 7 oM/ NTERRUPT
l ------ - j::- [BFEF BrFF | VECTORS
$D000 Dooo |12 KBYTES ACAVEPRCM
/_ FFCO | MORMaL
y MOLDES
_____ _ INTERRUFT
§FFFF FEFF FFFF |VECTORS
SINGLE ~ EXPANDED BOOTSTRAP SPECIAL
CHIP TEST

Figure 3.3: Memory Map of MC68HC11E9

20

3.3.1 Read-Only Memory (ROM)

There are two read only memories (ROMs) on MC68HC11 microcontrollers. One
of them is called program ROM or user ROM and the other one is bootloader
ROM.

As its name implies, program ROM contains instructions of user’s program.
Program ROM is not writable or changeable by user after fabrication, so
instructions of program are stored into this memory when the microcontroller unit
is manufactured. Program ROM occupies 12 Kbytes in 64 Kbytes memory space
of microcontroller unit. User may disable on-chip ROM if not needed. If ROM is
disabled it does not occupy area in memory space anymore.

Other read-only memory included in MC68HC11 microcontrollers is 192 byte
bootloader ROM. This memory unit is used for loading bootloader program in
special bootstrap mode. In normal operation modes, bootloader ROM is disabled
and does not occupy any area in memory space of microcontroller.

3.3.2 Random-Access Memory (RAM)

Random access memory can be thought as a temporary storage space during run-
time. User's program accesses to this memory during execution and uses this
memory space for storing and reading variables for making operations on them.

RAM occupies first 512 bytes of memory space normally, but it can be mapped to
beginning of other blocks of memory space in first 64 CPU cycles of

microcontroller operation.

21

3.3.3 Electrically Erasable Programmable ROM (EEPROM)

EEPROM allows user to store and change programs when needed after
manufacturing of microcontroller unit is completed. With the help of this memory
unit, user programs may be updated at any time.

MC68HC11E9 has 512 bytes of on-chip EEPROM. In MC68HC11 microcontrollers
in addition to this EEPROM unit, there is another EEPROM byte which is used for
controlling some basic features. This EEPROM byte is named as “CONFIG”

register.

EEPROM in the MC68HC11E9 is fixed at locations $B600-$B7FF. Reads from
EEPROM memory can be done by a read operation from address of location to be
read. Writes to EEPROM is controlled by EEPROM programming register
(PPROG). For writing to a location, first EEPROM programming voltage should be
enabled using EEPGM bit in PPROG register, then write operation should be
performed to the location and finally EEPROM programming voltage should be
disabled again. There are different ways to erase EEPROM locations. These are;
“byte erase”, in which EEPROM locations are erased one by one; “row erase”, in
which EEPROM locations are erased in rows and finally “bulk erase” in which all
bytes of EEPROM are erased at once. These methods are not applicable to
erasure of CONFIG register.

3.4 Central Processing Unit (CPU)

MC68HC11 microcontrollers utilize M68HC11 central processing unit (CPU). CPU
is responsible for executing software instructions in their programmed sequence.
There are 235 different operation codes (opcodes) in M68HC11 instruction set,
using page-select prebytes before opcodes, some new instructions are specified
and a total number of 310 instructions are reached.

22

The M68HC11 CPU accesses all input/output, peripheral and memory locations as
any location in memory space. This technique of access is called memory-mapped
I/O.

M68HC11 CPU contains two accumulators named accumulator A and B.
Accumulators A and B form double accumulator D together. There are two index
registers (IX and 1Y) in CPU which are generally used for calculating indexed
addresses. Stack pointer (SP), which is a CPU register, always points to next free
location of stack area. Program Counter register (PC), as its name implies, holds
address of next program instruction. Condition code register (CCR) holds status
indicator flags that indicate status of CPU after last instruction is executed. Table
3.1 shows internal registers of M68HC11 central processing unit.

Table 3.1: Internal Registers of M6BHC11 CPU

Register Explanation

Accumulator A 8 bit accumulator

Accumulator B 8 bit accumulator

Double Accumulator D Concatenation of accumulators A and B (A:B)

Index Register I1X 16 bit index register

Index Register 1Y 16 bit index register

Stack Pointer (SP) 16 bit stack location pointer

Program Counter (PC) 16 bit program instruction pointer

Condition Code Register (CCR) | 8 bit register with status indicators, interrupt
masking bits and STOP disable bit.

23

Five status indicators in condition code register give some information on
execution and results of instructions. Two interrupt masking bits are used for
masking global interrupts and interrupts generated from XIRQ pin. STOP disable
bit is used for avoiding STOP instruction to stop microcontroller operation. Table

3.2 summarizes meanings of flags in condition code register.

Table 3.2: Condition Codes Register

CCR Bit Bit Meaning
Location
Carry (C) 0 A carry out or borrow has occurred as a

result of operation.

Overflow (V) 1 Indicates a two’s complement overflow
condition as a result of operation.

Zero (2) 2 Informs whether the result of operation is
zero or not.

Negative (N) 3 Indicates that result of the operation is
negative.

| Interrupt Mask (1) 4 Disables all maskable interrupts.

Half Carry (H) 5 Set if carry from bit 3 has occurred.

X Interrupt Mask (X) | 6 Disables XIRQ pin interrupt.

STOP Disable (S) 7 Disables STOP instruction.

24

3.5 Addressing Modes

M68HC11 uses six different ways for accessing memory. These are called
“addressing modes”. Addressing modes are techniques for calculating address
information for memory access. Different modes of addressing in M68HC11 are
immediate, extended, direct, indexed, inherent and relative addressing modes.
These are studied in detail in following subsections.

3.5.1 Immediate Addressing Mode

In immediate addressing mode there is no need to calculate an effective address
to access data. Data needed is contained in bytes following opcode. Number of
data bytes is specific to opcode.

3.5.2 Extended Addressing Mode

In the extended addressing mode, two bytes following the opcode are effective
address of the data needed. No other calculations are needed; reading these two
bytes is enough for knowing effective address.

3.5.3 Direct Addressing Mode

Direct addressing mode which is also called “zero page addressing mode” is used
for accessing only to first 256 locations of memory space. High order byte of
effective address is zero and low order byte of the effective address is contained in
byte following the opcode.

25

3.5.4 Indexed Addressing Mode

In the indexed addressing mode, an offset value is contained in the byte following
the opcode. Effective address is calculated by adding this offset value to one of
the index registers. Information on which index register will be used for address
calculation is specific to opcode.

3.5.5 Inherent Addressing Mode

In the inherent addressing mode no address information is needed because
actually no addressing is done. Information on operands is available in opcode.

3.5.6 Relative Addressing Mode

Relative addressing mode is used for accessing a location within a range of £128
relative to program counter. Offset to program counter is available in the byte
following the opcode. This offset value is actually a signed byte. Relative
addressing mode is only used for branching program execution purposes.

3.6 Parallel Input / Output (1/0)

The MC68HC11E9 has five input / output (I/O) ports and 40 I/O pins that are
shared between these ports. All /O pins also have alternative functions. These
alternative functions are used by peripheral systems of microcontroller unit. Input /
output ports are named port A to port E. Number of pins on these ports may not be
equal to each other. Some of these pins are fixed-direction input or fixed-direction
output pins and some of them are bidirectional pins.

26

3.6.1 Data Ports

Port A is an 8-bit port with three fixed-direction input pins, four fixed-direction
output pins and one bidirectional pin. Port A pin 7 can be configured as input or
output port using DDRA7 bit in PACTL register. Port A pins can be used as
general purpose input/output pins and they also have alternative functions. Table

3.3 summarizes alternative functions of port A pins.

Table 3.3: Summary of Port A Pins

Pin | GPIO feature Alternative function(s)
PAOQO | Fixed-direction input Input capture
PA1 | Fixed-direction input Input capture
PA2 | Fixed-direction input Input capture

PAS3 | Fixed-direction output Qutput compare

PA4 | Fixed-direction output Qutput compare

PA5 | Fixed-direction output Qutput compare

PA6 | Fixed-direction output Output compare

PA7 | Bidirectional Pulse accumulator input / Output compare

Port B and port C actually function together with STRA and STRB pins of
microcontroller unit. These ports and pins are all together form handshake I/O

27

subsystem in single-chip mode and multiplexed address/data bus in expanded
mode. Information on handshake I/O subsystem can be found in section 3.6.2.

Port B is an 8-bit port which has all of its pins as fixed-direction outputs. As these
pins can be used for general purpose output, they also have alternative functions
in expanded operation mode. Port B is a part of handshake I/O subsystem.
Handshake 1/O properties of port B is summarized in section 3.6.2. In expanded
operation mode, port B serves as high order byte of address information. Table 3.4
presents functions of port B pins.

Table 3.4: Summary of Port B Pins

Pin | GPIO feature Alternative function(s)

PBO | Fixed-direction output Address bus bit 8 (A8)

PB1 | Fixed-direction output Address bus bit 9 (A9)

PB2 | Fixed-direction output Address bus bit 10 (A10)

PB3 | Fixed-direction output Address bus bit 11 (A11)

PB4 | Fixed-direction output Address bus bit 12 (A12)

PB5 | Fixed-direction output Address bus bit 13 (A13)

PB6 | Fixed-direction output Address bus bit 14 (A14)

PB7 | Fixed-direction output Address bus bit 15 (A15)

28

Port C is an 8-bit port. All pins of port C can be used as bidirectional general
purpose input/output pins. Port C is a part of handshake /O subsystem. In
expanded mode of microcontroller operation, this port is used for multiplexed
address / data bus. Table 3.5 lists functions of port C pins.

Table 3.5: Summary of Port C Pins

Pin | GPIO feature Alternative function(s)

PCO | Bidirectional Address / data bus bit 0 (ADQ)
PC1 | Bidirectional Address / data bus bit 1 (AD1)
PC2 | Bidirectional Address / data bus bit 2 (AD2)
PC3 | Bidirectional Address / data bus bit 3 (AD3)
PC4 | Bidirectional Address / data bus bit 4 (AD4)
PC5 | Bidirectional Address / data bus bit 5 (AD5)
PC6 | Bidirectional Address / data bus bit 6 (AD6)
PC7 | Bidirectional Address / data bus bit 7 (AD7)

Port D is a 6-bit bidirectional parallel data port. Two of port D pins alternatively
function as part of asynchronous communications interface (SCI) subsystem.
Other four pins alternatively function as a part of synchronous serial peripheral
interface (SPI) subsystem. All six pins of port D can also be used for general
purpose input/output functions. Summary on port D functions can be found in
Table 3.6.

29

Table 3.6: Summary of Port D Pins

Pin | GPIO feature Alternative function(s)

PDO | Bidirectional SCI Receive data (RxD)

PD1 | Bidirectional SCI Transmit data (TxD)

PD2 | Bidirectional SPI Master in / slave out (MISO)
PD3 | Bidirectional SPI Master out / slave in (MOSI)
PD4 | Bidirectional SPI Master clock out (SCK)
PD5 | Bidirectional SPI Slave select (SS)

Port E is an 8-bit fixed-direction input port. Pins of port E alternatively function as
analog-to-digital (A/D) converter channel inputs.

3.6.2 Handshake I/O Subsystem

Handshake I/O subsystem is used for sending and receiving data to external
devices in a more guaranteed way than normal parallel I/0. Ports B and C, STRA
input pin, STRB output pin are parts of this subsystem. Each device or only one
device that takes place in data transfer informs other side when it reads and/or
writes data to port. Operation mode of handshake /O subsystem determines
handshaking rules. Operation modes are called simple strobe mode, full-input
handshake mode and full-output handshake mode.

In simple strobe mode, port B is used as a simple output port which works together
with STRB strobe output and port C is used as a simple latching input together

30

with STRA strobe input. Input and output work independent of each other. In
simple strobe mode of handshake operation, a strobe signal is generated at STRB
pin whenever a data is written to port B. Data is read from port C and latched
when an active edge is encountered at STRA input.

Only port C, STRA and STRB pins are used in full-input handshake mode. In this
mode, a selected edge at STRA input causes data on port C to be latched into a
register and negation of STRB output. When the latched data is read in
microcontroller, STRB output is asserted again to indicate that data reception is
complete. In this mode, external system knows when to write data on port C using
STRB information. As a summary, data sending system informs receiving system
when it writes data to port and data receiving system informs data sending system
when it reads data from port.

In full-output handshake mode, external system is informed via STRB pin when a
data is written on port C and ready signal is read from STRA pin which indicates
that external system has read data from port. Full-output and full-input handshake
modes can be though as two different ends of data receiving and sending
systems. Full-output handshake mode has a variation named three-state full-
output handshake mode. In this mode, port C pins becomes driven outputs when
STRA goes to its active level.

3.7 Synchronous Serial Peripheral Interface (SPI)

Synchronous serial peripheral interface (SPIl) can be used for communicating
other microcontroller units or peripheral devices. SPI system can be configured as
master or slave. If it is configured as master, communication speed can be as high
as 1 Mbps and if it is configured as slave communication speed can be as high as
2 Mbps.

In an SPI transfer, a clock, which is generated by master device, synchronizes
shifting and sampling jobs. Shifting out of data and sampling of incoming bit occurs

31

at opposite edges of clock line, so reception and transmission occurs
simultaneously. Any slave device which is not selected via slave select input does
not read or write data from / to SPI bus.

In an SPI system only one master bus should be in communication network at a
moment. When SPI system is configured as a master and another device
becomes bus master, this situation is detected and SPI output drivers are disabled
to avoid harms. Error detection system which detects this condition is named
“‘multiple-master fault detector”. There is another error detector in SPI which is
called “write-collision detector”. This system detects and avoids a write attempt to
serial shift register while a transfer is in progress.

There are two different transfer formats of SPI system and these transfer formats
have two different clock polarity variations. Figures 3.4 and 3.5 which are taken
from “MC68HC11 Reference Manual” presents timing diagrams of CPHA equals
zero and CPHA equals one SPI transfer formats respectively.

SCK CYCLE #
(FORREFERENCE) L 2 3 4 5) 7 8

SCK (CPOL=0)

SCK(CPOL-1)

MOSI

(FROM MASTER) | i i i i
mso | -

fromstave L M X ¢ X 5 X 4 X 3

55 (TO SLAVE) | ‘ ‘ | | | | | ‘ ‘)|_

e —
e —
o
=
m
e —
L

Figure 3.4: CPHA Equals Zero SPI Transfer Format

32

As seen in Figure 3.4, in CPHA equals zero transfer format, transfer is started
when SS line goes to low. When CPHA equals one transfer format is selected,

transfer is started with first selected clock edge. SSline should be low for both

transfer formats.

SCHKCYCLE ¢ _
(FOR REFERENCE) ! 2 3] 5 B 7 B

SCK (CPOL=D) | | | | | |
| | | | | |
sekcrol=n L N AN NN
| i i
L]
[
L]

2

| |

| |

| |
(FROM r.mshTﬂgg]l ‘\{ M3E |}(A_* |X l“ :){ |3 lX | l)(|1 :X '-|SB)4
X5 X 4+ X 3 Xz X
SEEEEEE

MSO *-1
(FROM SLAVE] v w1 ‘}(

55 (T0 SLAVE) J ‘ |

Figure 3.5: CPHA Equals One SPI Transfer Format

1 X lea
|

-'-j _lk‘l"l-

3.8 Asynchronous Serial Communications Interface (SCI)

Asynchronous serial communications interface (SCI) used in MC68HC11
microcontrollers is full-duplex and uses one start bit, eight or nine data bits, one
stop bit none return to zero (NRZ) transfer format. SCI system has a transmitter
and a receiver part. Although they use same transfer formats and same baud
rates, transmitter and receiver parts of SCI system operate independent from each
other. Baud rates are generated using PH2-clock of microcontroller unit.

Transmitter of SCI is double-buffered so a character can be written to transmit
buffer while transmission of a character is in progress. Break and idle characters

can be queued for transmission. Transmitter can generate “transmit complete”

33

interrupt when it finishes sending all data in its queue or “transmitter data register
empty” interrupt when transmit data register is available for new character.

Receiver of SCI system is also double-buffered, so software has some time to
read received character before next character is received. Receiver can go to
sleep mode and wake-up when selected event occurs on line. Wake-up can be
initiated by an idle-line or address-mark detection in received data. SCI receiver of
MC68HC11 has an advanced noise detection and correction technique. This
technique is called “data sampling technique”. Receiver samples line data with a
clock frequency of 16 times the baud rate and uses these samples to decide logic
level of received bit. A start bit is recognized if a zero is sampled after three ones
and at least two of third fifth and seventh samples are zeroes. Reception is
synchronized to start bit in this way. Other bits are recognized by using eighth
ninth and tenth samples taken. If at least one of these samples does not agree
with others, noise flag is set. Received bit is decided by using majority of samples.
Generally detection would be correct even there is noise on line.

[—— PERCEIVED START BIT———
r——— ACTUAL STARTBIT——————— ==

RxD PIN LM .'

nexaborare | L) L) L] LI LI LI LI LI i

FFFFFFFFF
= =
o o

RTCLOCK e ‘m =
STATE

RESET RT H#HHH

Figure 3.6: Start Bit Reception

34

Figure 3.6 shows an example of start bit detection with some noise on line.
Although in this example start bit is received correctly, there may be some shifts in
locations of perceived and actual start bits due to amount of noise on line. If these
shifts are in an acceptable range, data sampling is expected to correctly receive
rest of incoming character.

3.9 Main Timer and Real Time Interrupt

Main timer system has a free running 16-bit counter. Counting frequency of this
counter can be programmed by user. Main time system includes three input
capture and four output compare subsystems, real time interrupt logic and
computer operating properly (COP) watchdog timer.

Input capture function records value of free running counter when a selected edge
is detected on corresponding input line. Input capture functions can generate
interrupt requests. This feature of input capture functions can be used for
measuring period or length of a signal on input pin.

Output compare functions generate an output when selected time has been
reached. In order to do this, an output compare register is loaded with 16-bit value
and when free running counter reaches to this value, a signal is outputted to
indicate the condition. Output compare functions can also generate interrupts

when selected count is reached by free running counter.

Computer operation properly (COP) watchdog timer function is used for resetting
microcontroller if a software error occurs. COP timer counts up with user selected
frequency and when it overflows microcontroller reset signal is generated
automatically. Software which is running properly should touch to COP timer and
clear it if COP is enabled. COP overflow means that software is not running
properly so it could not clear COP timer, so microcontroller should be reset to
correct this situation with a fresh startup.

35

Real time interrupt logic generates hardware interrupts with a user defined period.
RTI can be used for sharing microcontroller time between different tasks for multi-
tasking.

3.10 Pulse Accumulator

Pulse accumulator is actually an 8-bit counter that is used for counting selected
events or gated time accumulation. It can generate interrupt requests at every

event detected or when overflow occurs in 8-bit counter.

In event counting mode, pulse accumulator counts number of edges signal on PAI
input. It can be configured to count positive or negative edges.

In gated time accumulation mode, 8 bit counter is incremented at every 64 E-clock
cycles of microcontroller. The name “gated” comes from the feature that, counting
operation is gated to PAIl input. That means counting stops if PAI input is not its

selected level. This feature can be used to measure durations of events.

36

CHAPTER 4

DESIGN OF MC68HC11 MICROCONTROLLER MODEL
USING SYSTEMC

The object oriented nature of SystemC allows parts of a system to be designed as
separate modules. These modules can also be divided into sub modules. This
ability of SystemC allows unnecessary modules to be extracted from the whole
design, adding new modules to the design and using different abstraction levels
within different modules. Opportunity to use different abstraction levels for different
modules makes it possible to refine modules of a system independently without
affecting rest of the design.

In this thesis, the MC68HC11 microcontroller unit is divided into sub modules and
each sub module is implemented in SystemC as a part of overall microcontroller
system. These sub modules are, address bus controller, clock generator,
arithmetic and logic unit, controller unit, handshake I/O sub-system, timer system,
RAM, ROM, register file and serial communications modules. SystemC modules
have been shaped according to design complexity, similarities and common
requirements of peripherals in microcontroller unit. Modules that constitute
microcontroller core are tested and verified before they are brought together.
Although original MC68HC11E9 model has an analog to digital converter
subsystem; SystemC design made in this thesis does not contain analog to digital
converter module because standard SystemC library does not have data types for
modeling analog hardware.

37

SystemC implementation of MC68HC11 microcontroller unit is explained in this
chapter. Internal structure of designed microcontroller is given. Modules that
construct microcontroller are explained and their test results are presented.

4.1 MC68HC11 SystemC Model Internal Structure

Inside the MC68HC11 microcontroller model, all modules are interconnected to
each other by internal signals. Correct timing of these internal signals is very
important for correct operation of overall microcontroller model. Internal signals
may be divided into four categories mainly. These are internal clock signals that
synchronize modules with each other, control bus signals that are used for
maintaining correct operation of modules, data bus signals that carry data and
address bus signals that carry address information for memory modules. Internal
structure of MC68HC11 SystemC model and interconnections between modules
are presented in Figure 4.1 without much detail.

The developed SystemC model of MC68HC11 is verified using the test code that
is given in Appendix B. This test code contains all addressing modes and all types
of instructions. The test pogram has been run on original MC68HC11 EVBU board
in microprocessor design laboratory of METU electrical and electronics
engineering department. Test results that are presented in Appendix B verified that

implemented microcontroller is working same as the original microcontroller.

38

MC68HC11
SYSTEMC
MODEL

EXTAL

XTAL

Internal Clocks

CONTROLLER.

CPU

Control Bus

16-bit Addr. Bus

8-bit Data Bus

UNIT

.

Address Bus

Controller

Clock Divider [

Figure 4.1:

PORTD

PORTB
ROM PORTC
EEPROM

PORTE
Reg. File

I

STRA
ALL

STRB
Serial Comm.

PORT A

Handshake I/O

Main Timer

39

Internal Structure of MC68HC11 SystemC Model

Figure 4.2 shows datapath of the microprocessor. Source of the data that will be
processed can be register file or data bus.

> REGISTER FILE >
> -AB -PC Operation
N X - 5P Result
2 -IY -CCR]
ALU
Cond. Codes
> Fesult
N MUX
s
Data Bus

Figure 4.2: Datapath of Microprocessor

4.2 CPU Controller Unit

CPU controller unit module is central controlling element of MC68HC11 model.
This module is responsible for generating appropriate control signals for other
modules and to maintain correct operation of overall system. CPU controller unit
chooses correct signals with correct timing for other modules, according to state of
microcontroller, events occurring and instruction that is being executed. This
module actually consists of a state machine that is performing different tasks at
different clock edges. These tasks include opcode fetching, instruction decoding,
selecting arithmetic logic unit parameters and deciding owners of data and
address buses. A simple block diagram of CPU controller is shown in Figure 4.3.

40

Instruction Register State Register

Instruction Main State
Decoder Machine
Interrupt Combinational
Controller Logic

Figure 4.3: Block Diagram of CPU Controller

Synchronization between different modules of MC68HC11 model is done using
four internal clock cycles which constitute a bus cycle (E-Clock cycle). Modules
perform different jobs in each of these four internal clock cycles. Main processes
of CPU controller unit are sensitive to all of these four clock cycles and generate
different signals and perform different tasks at each clock cycle. Figure 4.4 shows
these four internal clock cycles.

camsons |1 LT LT LTS

PH2 Clock : !
I

I I
E-Clock ! '
|

Cyclel Cycle2 Cycle3 Cycled

Figure 4.4: Internal Clock Cycles of a Bus Cycle

41

As seen in Figure 4.4, internal clock cycle 1 starts with negative edge of E-clock,
cycle 2 starts with positive edge of PH2 clock, cycle 3 starts with positive edge of
E-clock and cycle 4 starts with negative edge of PH2 clock.

At negative edge of E-clock which is called first edge, controller unit sends
commands to register file module for incrementing, decrementing or not changing
program counter and stack pointer. At positive edge of PH2 clock which is called
second edge, chip select and read/write signals for RAM and ROM, data bus
owner select signal, register file output select signal, ALU command, instruction
type and B operand select signals, CCR mask information for instruction that is
being executed are sent to interested modules. At positive edge of E-clock which
is called third edge, condition code register is read, carry information is sent to
ALU and address bus owner is selected. At fourth cycle, instruction is fetched and
decoded if controller is in fetch state. Input source and destination for register file
is selected.

An instruction execution consists of at least 2 bus cycles and at most 41 bus
cycles. Instruction is fetched and decoded in first bus cycle and executed in the

remaining cycles.

Other modules of MC68HC11 SystemC model are synchronous to these four
internal clock cycles. Generally CPU controller unit puts a signal one or two clock
cycles before that signal is read by target module. This guarantees a setup time
for signals before they are being read. CPU controller unit decides signal values
according to states of CPU. Different states of CPU are presented in Table 4.1

with explanations.

42

Table 4.1: CPU States

CPU State

Explanation

START

Starting state of CPU. Internal register are loaded with
their initial values. Devices are set to their initial states of
operation.

Opcode Fetch

Opcode is fetched from memory.

Opcode Fetch 2

If first fetched opcode was page information, actual
opcode is fetched from memory again.

Read Extended Addr. High

High order byte of effective address value in extended
addressing mode is read from memory.

Read Extended Addr. Low

Low order byte of effective address value in extended
addressing mode is read from memory.

Calculate Ind. Addr. Low

Low order byte of effective address value in indexed
addressing mode is calculated.

Calculate Ind. Addr. High

High order byte of effective address value in indexed
addressing mode is calculated.

Calculate Rel. Addr. Low

Low order byte of effective address value in relative
addressing mode is calculated.

Calculate Rel. Addr. High

High order byte of effective address value in relative
addressing mode is calculated.

Read Direct Address

Low order byte of effective address value in direct
addressing mode is read from memory.

8 Bit Execution

An 8 bit operation is executed.

Arith. 16 Bit Execution Low

Low order byte of 16 bit arithmetic operation is executed.

Arith. 16 Bit Execution High

High order byte of 16 bit arithmetic operation is executed.

Logic 16 Bit Execution Low

Low order byte of 16 bit logical operation is executed.

Logic 16 Bit Execution High

High order byte of 16 bit logical operation is executed.

43

Read Operand

Operand is read into temporary register for use in
following cycles of operation.

Read Execution Operand

An operand is read into temporary register that will be
used for execution in following cycles of operation.

Write Memory 1

Result of operation is being prepared to write to memory.

Write Memory 2

Result of operation that is prepared in Write Memory 1
state is stored into memory.

Multiplication

CPU is performing a multiplication operation.

Integer Division

CPU is performing an integer division operation.

Fractional Division

CPU is performing a fractional division operation.

Stack Operation

An operation on stack space is being executed.

Stack Operation INCSP

An operation on stack space is being executed with
incrementing stack pointer at the same time.

Push Data

Data is pushed onto stack.

Pull Data

Data is pulled from stack.

Set Interrupt Mask

Interrupt mask is set.

Load Interrupt Vector

Interrupt vector is loaded to program counter after an
interrupt occurred.

TEST TEST instruction has put CPU in TEST state. CPU stays
in this state until a reset.
ERROR CPU should never be in this state. If CPU enters into this

state that means an error has occurred.

44

4.3 Clock Divider

PH1clk —>

clk Clock PH2clk —>
Divider

Eclk —>

AS —>

Figure 4.5: Clock Divider Symbol

Clock divider module takes external clock source as an input for generating
internal clock signals and address strobe (AS) signal. Figure 4.5 shows input and
output ports of clock divider. Internal clock signals of MC68HC11 MCU model are
phase-1 (PH1) clock, phase-2 (PH2) clock and E-clock. Frequencies of PH1, PH2
and E-clock signals are equal to each other and 4 of the frequency of external
clock input. PH1 and PH2 clocks are 180 degree shifted versions of each other. E-
clock lags 90 degrees behind PH2 clock. AS signal low-to-high transition (positive
edge) lags behind E-clock negative edge with a 45 degrees phase difference and
AS signal remains high for a time equal to one external clock period.

45

External Clock

FH1 Clock
PHZ Clock

eoek | L[L |
Address Strobe (AS) I—I—

Figure 4.6: Internal Clock Signals of MC68HC11

For verification of clock divider module, external clock signal (XTAL_Clock) with a
frequency of 2 MHz is applied to the module input and outputs of the module are
observed. Internal clock signals of original MC68HC11 MCU are presented in
Figure 4.6. Resulting input and output signals waveforms of clock divider module
simulation are shown in Figure 4.7.

. 4z Bz Bns
Signals Walue 3483z 7539pz
T4l Clock h I I I O I O I S e
PH1_Clack h , L
FHZ_Clock hO] ! [
E_Clock h
A5 hO ' [

Figure 4.7: Resulting Waveforms of Clock Divider Simulation

46

4.4 Arithmetic and Logic Unit (ALU)

ALU performs arithmetic and logic operations. It takes operands, command code,
carry and instruction type as inputs, executes operation that is specified by
command code and outputs result and condition codes. Input and output ports of
ALU are shown in Figure 4.8. ALU uses an “instruction type” input (alu_instr_type)
for deciding if the operation is 8-bit operation or high order part of a 16-bit
operation. Since ALU can perform only 8-bit operations, for making 16-bit
operations alu_instr_type is used in order to specify whether current operands are

low order or high order operands.

alu_a_in

alu_b _in

8
alu_result_out 7%

alu_c_in

ALU

alu_cmd _in a
. alu_cer_out 7%
alu_instr_type - -

clk

LLELETE

Figure 4.8: Arithmetic and Logic Unit Symbol

MC68HC11 model actually contains another module related to ALU, which is
named ALU input multiplexer. This is a small module that takes two 8-bit inputs
from register file and data bus and outputs one of them to arithmetic logic unit

according to select signal that is asserted by controller unit.

47

Ef, alu_a_in g
7 |]]
Logical
LInit

g, alu b in — Adder H Multiplier Divider —

alu_c_in |_ | [| | | B;\
alu_result_u:uutJIF s

alu_instr_type \
ALLI Cantraller]
] FlN
clk
5 | alu_ccr_out /s

| Command Decoder
5, alu_cmd_in
/

Figure 4.9: ALU Block Diagram

Block dagram of Arithmetic and logic unit is presented in Figure 4.9. ALU is
synchronous and main process of this module is sensitive to negative edge of
PH2-clock input. Different commands and corresponding operations are listed in

Table 4.2.

48

Table 4.2: ALU Commands and Meanings.

ALU Commands

Name Code | Operation

nop_cmd 0x00 | No operation

add_cmd 0x01 | Addition of operand A to B without carry

inc_cmd 0x02 | Increment operand A by one

sub_cmd 0x03 | Subtraction of operand B from A without borrow
dec_cmd 0x04 | Decrement operand A by one.

and_cmd 0x05 | Logical AND operation on operand A and operand B
or_cmd 0x06 | Logical OR operation on operand A and operand B
xor_cmd 0x07 | Logical XOR operation on operand A and operand B
com_cmd 0x10 | Take one’s complement of operand A

neg_cmd 0x11 Take two’s complement of operand A

Isl_cmd 0x0B | Logical shift left

asr_cmd 0x0C | Arithmetic shift right

Isr_cmd 0x0D | Logical shift right

rol_cmd OxOE | Rotate left

ror_cmd 0xOF | Rotate right

daa_cmd 0x12 | Decimal adjust accumulator

addwc_cmd 0x08 | Add operands with carry

subwc_cmd 0x09 | Subtract operand B from operand A with borrow
clr_cmd O0x0A | Clear all bits

49

addsigned_cmd | 0x13 | Make signed addition between operands

andinv_cmd 0x14 | AND inverted version of operand A with operand B

andinv2_cmd 0x15 | AND inverted version of operand B with operand A

tst_cmd 0x19 | Subtract operand B from operand A. Status flags are
different from standard subtraction.

strmul_cmd 0x16 | Start multiplication.

mul_cmd 0ox17 Do multiplication.

end_mul 0x18 | End multiplication, give result.

ldn_cmd 0x1A | Load numerator for integer division.

|dfdivn_cmd 0x1F | Load numerator for fractional division.

div_cmd 0x1B | Do division.

divresQ_cmd 0x1C | End division, give quotient.

divresR_cmd 0x1D | Give remainder of division operation.

fdivsub_cmd 0x1E | Do subtraction step of fractional division.

50

In order to verify ALU, a test bench that outputs all ALU commands and operands

choosen for boundary condition testing is designed. Using this test bench,

arithmetic and logic unit is verified. Figure 4.10 shows some part of the test

results.

Operandl
Rezult =

Operandl
Result =

Operandl
Result =

Operandi
Result =

Operandi
Result =

Operandl
Result =

Operandl
Rezult =

Operandl
Rezult =

Operandl
Rezult =

Operandl
Rezult =

Operandl
Result =

Operandl
Result =

Operandi
Result =

Operandi
Result =

Operandl
Result =

= F5, Operand2
BD, CCR = 9

= FF. Operand2
1, CCR = 8

= GCA,. Operand2
DA. CCR = 9

= @8, Operand2
FE. CCR = 8

= AR, Operand2
AA, CCR = 8

= BF, Operand2
5F, CCR = 8

= 55, Operand2
A, CCR = B

= B8, Operand2
55, CCR = 1

= @8, Operand2
56, CCR = 1

= 82, Operand2
54, CCR = 3

= 88, Operand2
GA, CCR = 9

= 55, Operand2
5@. CCR = 3

= 52, Operand2
87, CCR = A

= 52, Operand2
A1, CCR = B

= 7C, Operand2
g2, CCR = A

C8 .

F@.

FF.

FA.

55,

@F.

AR,

AR,

AA.

81,

Al.

43,

43,

aa.

Carry

Carry

Carry

Carry

Carry

Carry

Carry

Carry

Carry

Carry

Carry

Carry

Carry

Carry

Carry

Command

= B8, Command

Command

Command

Command

Command

= @, Command

Command

Command

Command

Command

= B, Command

Command

Command

Command

Addition without carry

Increment

Subtract

Decrement

AND

OR

®OR

One’s Complement

Two's Complement

Logical Shift Left

Arithmetic Shift Right

Logical Shift Right

Rotate Left

Rotate Right

Decimal Adust Accumulator

Figure 4.10: Arithmetic and Logic Unit Test Results

Waveforms of test results for different instructions are given in Figures 4.11 to

4.24. ALU Operands and operations results can be seen in these figures. Results

of the tests verify that ALU is operating correctly.

51

B4us, |BBus, 7 [BBus. | [BOus,
PH2 Clk r \ —
Cammand[4:0] 0)
Operand_A[7:0] F5 |
Operand_B[7:0] Ca I
SystemC.Carry [
Result[7:0] AF | BD
CCR_Result[7:0] I 03
Figure 4.11: ALU Addition Test Waveforms
o pous, p2fs | pauss BB
PH2 Clk f \ —
Cormmand[4:0] I 02]
Operand_A[7:0] I FF I
Operand_B[7:0] I i}]
SystemC. Carry
Result[7:0] BD I 01
CCR_Result[7:0] 09 | il
Figure 4.12: ALU Increment Test Waveforms
Aus . Bus. Y BBus | [100us
PH2 Clk| | -
Command[4:0] i 03]
Operand_A[7:0] i Ca]
Operand_B[7:0] I FO I
SystemC.Carry
Result[7:0] 01] 0o
CCR_Result[7:0]]] 09
Figure 4.13: ALU Subtract Test Waveforms

52

|1III.!II|_|9i L |1|:|.IELISI |'IIII.Iflu9i L |1D.IEUSI

PHZ Clk ||] \
Command[4:0] I 04 !
Operand_A[7:0] I i} |
Operand_B[7:0] I FF]

SystemC. Carry

Result[7:0] Wi] | FE
CCR_Result[7:0]|__09] 08
Figure 4.14: ALU Decrement Test Waveforms

L

IfluEi L |‘IIII.|E|_|Ei |1D.IBUSI L |11.I|:|LISI L
PH2 Clk|_ | r
Command[4:0] I 05]
Operand_A[7:0] I AR]
Operand_B[7:0] I FO I
SystemC. Carry
Result[7:0] FE | A
CCR_Result[7:0] 03

Figure 4.15: ALU AND Operation Test Waveforms

|11.|Elu9i | |11.?'u9i |11.Ifll_|9i L |11.|5LISI

PH2 Clk || f | |

Cormmand[4:0]|__I 06]

Operand _A[Z:0]|_J OF I

Operand_B[7:0] | 5]
SystemC. Carry

Result[7:0]|[_AD I 5F

CCR_Result[7:0] I oo

Figure 4.16: ALU OR Operation Test Waveforms

53

|11.Eus
1 1

L
L

|11.Bus
1 1

|12.Elus
| 1

PHZ_Clk

Command[4:0]

|

—

a7

Operand_A[7:0]

55

Operand_B[7:0]

)
i
)

0F

SystemC. Carry

Result[7:0]

aF

i

a4

CCR_Result[7:0]

od

Figure 4.17:

|12.Elu5
1 |

|12}L§

|12.4u5
| 1

ALU XOR Operation Test Waveforms

|12.

PHZ_Clk

Command[4:0]

Operand_A[7:0]

Cperand_B[7:0]

SystemC. Carry

Result[7:0]

CCR_Result[7:0]

Figure 4.18:

L

e

i

an

i
)
)

Ab

54

55

01

12.|fll_|9i

|12.Eus
| 1

|12.Bus
1 1

ALU Complement Test Waveforms

|13.EI|_|5
1 1 1

PHZ_Clk

Command[4:0]

Operand_A[7:0]

Cperand_B[7:0]

SystemC. Carry

Result[7:0]

CCR_Result[7:0]

I

—

i

]

an

i

55

56

01

Figure 4.19:

54

ALU Negate Test Waveforms

us |13.|5LISI I‘: |13'|8U5| |M'PUS. L |
PH2 Clk ||| \ -
Cormrmand[4:0] | ac]
Operand_A[7:0] ([a8]
Operand_B[7:0] |1 81]
SystemC. Carry
Result[7:0]|_54 ! 1]
CCR_Result[7:0] |03] 09

Figure 4.20: ALU Arithmetic Shift Right Test Waveforms
|13.!:|USI |13.|3'u9i |13.|4|_|5I | |13.|5LISI
PH2 Clk || | -
Cormmand[4:0] I 0B]
Operand_A[7:0] I 82]
Operand_B[7:0] b |
SystemC. Carry
Result[7:0] 56 I 54
CCR_Result[7:0] I 03

Figure 4.21: ALU Arithmetic / Logical Shift Left Test Waveforms
3u5I | |14.!Ilusl |14.I?ue; |'Ifl.|fll_|9i L |
PH2_Clk f | r
Command[4:0] I oo]
Operand_A[7:0] I g5]
Operand_B[7:0] I Al]
SystemC.Carry r
Result[7:0] C0 | 50
CCR_Result[7:0] 09] 03

Figure 4.22: ALU Logical Shift Right Test Waveforms

55

|14.If1u9; L |‘Ifl.|E|_|Ei I'I |'If1.§3u9i | |15.|Elu9i |
PHZ_Clk / | r
Command[4:0] i 0E]
Operand_A[7:0] ! 52
Operand_B[7:0] I 43
SystemC. Carry J
Result[7:0] £0 | 57
CCR_Result[7:0] 03] 0,
Figure 4.23: ALU Rotate Left Test Waveforms
. [15.0us |'15.|Z_|5I ., [Bdus o 1AE
PHZ_Clk ! | r
Command[4:0] I OF]
Operand_A[7:0] 52]
Operand_B[7:0] 43 I
SystemC. Carry |
Result[7:0] 87 | Al
CCR_Result[7:0] 0,] 0B

Figure 4.24: ALU Rotate Right Test Waveforms

4.5 Register File

Register file contains all CPU related registers. Accumulators A and B, index
registers X and Y, program counter (PC), stack pointer (SP), condition codes
register (CCR) are contained in this module. Register file also contains some
temporary registers that are used for different purposes like holding address
values or ALU operands temporarily. Inputs and outputs of register file are

controlled by CPU controller unit. This module is synchronous and performs

56

additional tasks like incrementing program counter, incrementing or decrementing

stack pointer or exchanging registers. Input and output ports of register file module

are given in Figure 4.25.

AluResultln

CCRIn

Register File
DataBusin

Contrin
DiataCut

?ﬁ
ﬁ 8
ﬁCOntrHiln g E
DataOut2 ﬁ
—~£—>{ CCRMaskin
Z :
Sl in1Dest AddrOutHi ﬁ
%Out‘lSel AddrOutLo z%
4
ﬁ'ﬁ Out2Sel TernpCCROUt z%
—=4—> OutHiAddr
5 CCROUt ——>
—=4 25 OutLoAddr
e PCCmadin
% In1Src
% In _wer_n
eclk phz2clk

T 7T

Figure 4.25: Register File Symbol.

User available registers contained in register file module are listed below:

ACCD : 16-bit accumulator D register that consists of accumulator A
(ACCA) and accumulator B (ACCB).

IX : 16-bit index register X

Y : 16-bit index register Y.

SP : 16-bit stack pointer register.

PC : 16-bit program counter register.
CCR : 8-bit condition codes register.

57

A register file test bench is developed for verification of register file. This test
bench performs tests on register file by writing values to its registers and than
using these values in registers for address outputs or data outputs. Outputs of
register file are compared with previously written values. Figure 4.26 shows
resulting waveforms and Figure 4.27 shows console output of simulation.

Sighals Walue Hus 100us
KTAL_Ch | hi JTULMH T e e e
FHZ_Clock | ho I I N D e
E_Clock |k [I N T I
AddrHiSelect(2:0] | k1 I WD 1T H I WD 1T H I RO T H 1
AddrHi(7:0] | kOO " had 1 ORI ORI T R3O Y k34 T R3ID]t
AddriLoSelect(2:0] | k1 I hi | 1 I ki I H I ki I h1 1
AddrLo(7:0] [hO0 kR T RED T ORRE T KRR T KRR T KA1 1
DatalSelect(2:0] | k1 I he | hi I kO I HI I hZ i h3 1
Dratal(7:0]1 | kOO b T R3] hi0 I h24 7 h45 1
Data2Select(3:0] [k I hi I k0T W I ke 1 k3 T K
Dataz2(7:0] |hoo h3d Y koo I hic | K45 T R4 T H
DataBus(7:0] | k04 I Kee 1 REO Y KEZ] KR4 Y KEE T hGE
AluResul(7:0] |ho3 I kad 1 KBF T kel] he3] KER T REV |
In_Source | h] [] [] [L
In_Destination[2:0] | k1 I ke T W T WO YT K11 RZ T R3Y
Command(3:0] [h5 I k& | h3 I ki I k& I i hil 1
RAw | h1 N | [L

Figure 4.26: Register File Test Waveforms

58

Received : IncrementSP

AddrOutHI = PCH : Y8 - AddrOutL0 = PCL = 71
CCROut = Bx4?, TempCCROut = Bx41

RegFile Weite Mew Data :@x84. Destination: CCR
I¥: Bx4845 — IY¥: Bx6CH7

PC: Bx7871 — 8F: B8x745A

A: Bx?C - B: Bx7? — CCR: Bx84

Recedived : Wo Change in PC
AddrOutHI = SPH : 74 - AddrOutL0 = SPL := 5A
CCROut = BxB2, TempCCROut = Bx42
RegFile Weite Mew Data :@Bx85,. Destination: IR Low
I¥: Bx4885 — IY¥: Bx6ChH7?
PC: Bx7871 — 8F: B8x745A

A: Bx?C — B: 8x79 — CCR: BxB2

Received : IncrementPC

AddrOutHI = PCH : Y8 - AddrOutL0 = PCL = 72

CCROut = Bx42, TempCCROut = Bx43

RegFile Weite Mew Data :@Bx88. Destination: IA High
I¥%: Bx8885 — IY: Bx6ChH7?

PC: Bx7872 — 8F: Bx745A

A: Bx?C — B: B8x79 — CCR: Bx42

Received : IncrementSP

AddrOutHI = SPH = Y4 - AddrOutLd : SPL : 5B
CCROut = Bx46, TempCCROut = Bx44

RegFile UWrite HMew Data :8x89,. Destination: IY Low
I¥: Bx8885 — IY: Bx6CE9

PC: Bx7872 — S5P: @Bx745B

A= Bx7C — B: Bx7? — CCR: Bx4d6

Recedived : Wo Change in PC

AddrOutHI = PCH : Y8 - AddrOutLd = PCL = 72
CCROut = Bx44, TempCCROut = Bx4b

I¥%: Bx8885 — IY: Bx6CBY?

PC: Bx7872 — SP: Bx745B

A: Bx7C — B: Bx7? — CCR: Bxd4

Received : IncrementPC

AddrOutHI = SPH : 4 - AddrOutLO : SPL : 5B
CCROut = Bx46, TempCCROut = Bx4d6

I¥: Bx8885 - IY: Bx6CBY?

PC: Bx7873 — SP: Bx745B

Az Bx7C — B: 8x7? — CCR: Bx4d6

Received : IncrementSP

AddrOutHI = PCH : Y8 - AddrOutLd : PCL = 73
CCROut = Bx47,. TempCCROut = Bx47

I¥: Bx8885 — IY: Bx6CE9

PC: Bx7873 — SP: BxM45C

A Bx7C — B: Bx7? — CGCR: Bx47

Figure 4.27: Register File Test Console Outputs

59

4.6 Address Bus Controller

Address bus controller module is designed to put correct address on address bus.
This module takes select inputs from CPU controller unit and using these inputs,
determines source of address information and asserts chip select signals to
memory units. Source of address information can be outputs of register file, ALU
result or data bus. Address bus controller also includes INIT and PPROG
registers. “InitWriteTimeout’ input is tied to CPU controller unit and informs this
module that 64 cycles has passed after start of microcontroller operation, so INIT
register is not writable anymore. This module is synchronous and sensitive to PH2
and E-clock signals. Address bus controller takes two inputs from register file, one
input from arithmetic and logic unit and one input from data bus. Input and output
ports of this module are given in Figure 4.28.

%%Addrln AddrOut gﬁ
z%ﬂegF-leHiln Datald é’E%
ﬁ RegFileLoln ProgReg _”%
—£S) AluResultin Address Bus csram ——>
o Controller oo [—
% Selectlo csreq %
% InitWriteTimeout cseeprom %
% Resetin . csextemal %

= 5 5 £ s

2 &= & 8§ %

TTTT

Figure 4.28: Address Bus Controller Symbol

60

For verification, an address bus test bench is designed that applies random
signals to address bus controller unit. Address bus controller inputs are tied to
“RegFile_HI_0", “RegFile_LO_07, “Alu_Result_1”, “Data_Bus_ 1" signals for
verification. Two select inputs of module are tied to “SelectHI” and “SelectLO”
signals. “Address_Bus” signal is tied to output of the address bus controller
module. When “SelectHI” signal is low, “RegFile_HI_0” signal; when “SelectHI”
signal is high, “Alu_Result_1” signal is selected for address bus high order byte.
Module selects “RegFile_LO_0” signal for low order byte of address bus when
“SelectLO” signal is low and “Data_Bus_1" signal when “SelectLO” signal is high.
Figure 4.29 and Figure 4.30 show test results which verify the module.

Signals Value 10uz 150z 20uz

ATAL_Clhk (k0
PHZ_Clock. | h
E_Clock | hi

Aly_Result_1[70) | hel =] I [|

Data Busz 1(70] | k13 hO5) KOE 1 hO7 7 KOS) KO3 T hOa | RHOBE 7 hic |

RegFile_HI_0[7:0] | KO0 hoo

RegFile_LO_0O(F:0] [h13 W05 T ROE 1 ROV T RO | KO3 7 ROa | ROb | WOc
SelectHl | k1 | [| [] [[
SelectLD | K1] []

Address_Bus(15:0) | k0012 | hel05 { OO0 | heOO7 | hOOOS | hBEDS J hO0O0a | helOb | hOOC

Figure 4.29: Address Bus Controller Test Results

61

Addresz Bus Controller Addr Out - BxB653
Selected: EEPROM

Address Bus Controller Addr Out : BxBE54
Selected: RAM

Address Bus Controller Addr Out : BxEAS5S
Selected: ROM

Address Bus Controller Addr Out - BxBEL6
Selected: RAM

Addreszs Bus Controller Addr Out = BxB6L5S7T
Selected: EEPROM

Address Bus Controller Addr Out : Bx0@58
Selected: RAM

Address Bus Controller Addr Out : BxB657?
Selected: EEPROM

Address Bus Controller Addr Out - BxBALA
Selected: RAM

Address Bus Controller Addr Out - BxEASE
Selected: ROM

Address Bus Controller Addr Out : BxBASC
Selected: RAM

Address Bus Controller Addr Out = BxB65SD
Selected: EEPROM

Address Bus Controller Addr Out = BxBHASE
Selected: RAM

Addreszs Bus Controller Addr Out = BxBG6SF
Selected: EEPROM

Address Buszs Controller Addr Out : BxBE6A
Selected: RAM

Address Bus Controller Addr Out - BxB661
Selected: EEPROM

Address Bus Controller Addr Out - BxBE62
Selected: RAM

Addressz Bus Controller Addr Out - BxEBG3
Selected: ROM
AddressBusController Test Ended

Figure 4.30: Console Outputs of Address Bus Controller Test

62

4.7 Handshake I/0 Module

—>| eclk
—>| ph2clk Datalo K2
— reset PortBPins >
as_in PortCPins é’%
:m_i“ HANDSHAKEWO oo
—) w_in STRE ——>
= Adain STRA | &—
% Expanded StrA_lrq %

Figure 4.31: Handshake 1/0 Module Symbol

Handshake I/O module includes port B, port C, strobe A, strobe B and handshake
I/0O subsystem. Input and output ports of this module are presented in Figure 4.31.
Expanded mode operations of ports B and C are also implemented in this module.
Data on port C pins is latched into PORTCL register when a selected edge is
detected at strobe A (STRA) input and strobe B signal is negated at upcoming
PH2 clock positive edge if full-input handshake mode is selected. Strobe A flag
(STAF) and strobe B signals are synchronized with internal PH2 clock positive
edge as it is in original MC68HC11. All modes of handshake I/O subsystems are
implemented in this module. These modes are simple strobe handshake mode,
full-input handshake mode, normal and three-state variations of full-output

63

handshake mode. Verification of this module is done by using simulation platform

that is developed as a goal of this thesis.

eclk E

iw
. = 25 Y
thzclk Handshaking Caontraller % 7 Datalo 7
reset Input Latch o PartBPins
> o Vs ™,
as_in = ' PortCPins
- = 8
________5> [
cs_in , - ™ “ PortEPins
- Expanded Addressing Y
s
W‘ Controller E , STRE
7 o ~ STRA
Addrin & \
I

Strd_Irq

Expanded

Figure 4.32: Handshake I/O Module Block Diagram

4.8 Timer System

Timer system module of MC68HC11 MCU model includes main timer, pulse
accumulator and Port A. These three peripherals are all contained in one module
because of their interactions with each other. These peripherals share some
internal registers; main timer and pulse accumulator systems share port A pins.
Real-time interrupt, computer operating properly (COP), input capture and output
compare functions of main timer system are all implemented in the timer system
module of MC68HC11 SystemC model. This module contains largest number of
internal registers among the other modules. Input and output ports of timer system

module are presented in Figure 4.33.

64

—>) eclk

—— phzclk Datal0O é%
——>) reset PortAPins é’%
——>} as_in TIMER IROs ——>
—>} cs_in SYSTEM COPReset ——>
—>{ w_in COPDisable [E—
B3 adarmn COPClearln §&—
— covpm WiTimeout [&—

Figure 4.33: Timer System Symbol

Main timer clock is generated using E-clock signal. Free running counter is
sensitive to this main timer clock. Also pulse accumulator clock, real time interrupt
function clock and COP function clock are generated using main timer clock.
Output compare functions compares free running counter with values loaded into
interested registers and sets corresponding port A pin is these two values become
equal to each other. Input capture functions save value of free running counter into
corresponding registers when selected edges are detected at corresponding pins
of port A.

There are eleven interrupt sources in this module. Ten of them are main timer
system related interrupt sources. There are five interrupt sources from output-
compare function, three interrupt sources from input-compare functions, one
interrupt source is free running timer overflow and one is real time interrupt
function. Pulse accumulator system requests interrupt when its internal counter

overflows.

65

Pulse accumulator system operates in two different modes. These modes are,
time accumulation and event-counting modes. Time accumulation function of this
module counts selected edges of pulse accumulator clock and sets overflow flag
and requests interrupt, if enabled, when internal pulse accumulator counter
overflows. Event counting function operates similar to time accumulation function
with a difference that it counts selected edges on PAIl pin of port A. Port A
functions are also included in this module including sharing pin-7, forcing of
outputs in three state variation of full-output handshake mode. Verification of this
module is done in developed simulation platform. Block diagram of timer system is
presented in Figure 4.34. Timer system is tested and verified using examples from
M68HC11 Referece Manual.

>
eclk
\ Timer Clock gugnrz:'itner < /8, \
phclk 7 Generataor F'rpnperlyg < \,; TNV
o
H Function [<f - >
reset oL PortAPins
> Y
as in Real Time DUtF'Ut IRCs e
- Interrupt EU"OPWE \
% Generator egisters ~
cs_in Main Timer | | , COPReset
H Controller .
w_in Input . COPDisable
g“% Fulse Capture <
Addrin Arccumulator Registers P COPClearln
% ~ WiTimeout
CBYPIn

Figure 4.34: Timer System Block Diagram

66

4.9 Serial Communications Module

Serial communications module contains asynchronous serial communications
interface (SCI), synchronous serial peripheral interface (SPI) and port D. These
three peripherals are brought together in this module because they share some
registers and pins with each other. Port D is a 6-bit bidirectional general purpose
I/O port. Four pins of port D are shared between general purpose I/O functions
and SPI system and other two pins are shared between general purpose |/O
functions and SCI system. Input and output ports of this module are given in
Figure 4.35.

—>) eclk Datalo |
% ph2clk

% reset PortDPins 63%
—Macin SERIAL

. COMMUNICATIONS

% cs_in UNIT SCl Irg %
% w_in

LS addrin SPI_Lliq —>

Figure 4.35: Serial Communications Module Symbol

There exists a clock divider process in the module which divides ph2 clock and
generates baud rate and SPI clock signals. Receiver and transmitter processes for
SClI

implemented compatible with 16x data sampling technique to reduce reception

are also included in serial communications module. SCI receiver is

errors. Master and slave mode operations of SPI system are implemented in two

67

separate processes because they are sensitive to different signals. Block diagram
of serial communications module is presented in Figure 4.36. Serial transmitter
and receiver are tested and verified using the serial port test program given in
Appendix B.

AN
eclk # 3
H BALD Clock E: Datal0 ;’
ph2clk

Generator

reset E‘ eﬁ%
H PortDPins
as_in

FORTD

b =PI
cs in
- 2 & SCl Irq
% T " Slave
rw_in ransmitier Functions

16 ; ;
Addrin SPI_lrq >

Figure 4.36: Serial Communications Module Block Diagram

68

4.10 Read Only Memory (ROM)

% Addrln

% B
eelk ROM DataOut ﬂ%

% cs_in

% as_in

Figure 4.37: ROM Symbol

This module is designed as read only memory (ROM) of microcontroller unit
model. Size of ROM is 12 Kbytes. ROM is synchronous, it latches address
information using address strobe input (as_in) and outputs addressed data at
positive edge of E-clock if chip select input is at its active level. This module
contains a process to read ROM contents from a data file for debug and simulation
purposes. Symbol of ROM module is presented in Figure 4.37.

Verification of ROM module is done by first loading data into ROM memory using a
file and then reading all locations of ROM and comparing values read with original
values. Figure 4.38 shows console output of test process.

69

ROM: Address:-Bx674 Data: BxcH
Original value : BxcH

ROM: Addresz:-B@x6?5 Data: Bxch
Original value = Bxch

ROM: Addrezsz:@x6?6 Data: Bxec
Original value : Bxec

ROM: Address:-Bx62?7 Data: Bx2
Original value = Bx2

ROM: Addreszz:-B@x678 Data: Bx74
Original value : Bx%4

ROM: Addrezss:@x6?7? Data: Bxl2
Original value = Bx12

ROM: Address:-Bx6%a Data: Bxec
Original value : Bxec

ROM: Addreszsz:@Bx6%h Data: Bx74
Original value : Bx%24

ROM: Address:@x6%c Data: Bx69?
Original value : Bx67?

ROM: Addressz:-Bx6?7d Data: Bx38
Original value : Bx38

ROM: Addrezz:@x6%e Data: Bxf6
Original value : Bxf6

ROM: Address:@x6?f Data: BxB3
Original value : Bx83

ROM: Addressz:-Bx6aB Data: Bxaf
Original value : Bxaf

Read Count

: 188808 Error Count:- @

ROM Test Ended

Figure 4.38:

Console Output of ROM Test

Figure 4.38 shows values read from address locations of ROM and original values

that were loaded to ROM. Consistency between these values verifies ROM

module. Some part of resulting waveforms of test is presented in Figure 4.39.

raignals
Tme
oystemC ROM_Data_Out[7:0]
SystemC Address Bus[15:0]
SystemC.PH2 Clock
SystemC.E_Clock
SystemC XTAL Clk

T aves

I | I I I L
I | | |
SNSSREREREREEEREERERERENE

Figure 4.39: Resulting Waveforms of ROM Test

70

411 Random Access Memory (RAM)

Addrln
eclk g

cs_in RAM p, 0 K=—>

as_in

LULLT

P in

Figure 4.40: RAM Symbol

RAM module is an implementation of 512 bytes random access memory. This
module is synchronous to E-clock. Address information is latched using address
strobe input (as_in). Data from data I/O port is written into addressed register at
negative edge of E-clock if read / write (R/W) input (wr_in) is at its “write” level and
chip select input (cs_in) is at its active level. Addressed data is put onto data 1/O
port if chip select input is at its active level and R/W input is at its “read” level. Data
I/O port is at high impedance if this module is not selected.

Verification of RAM module is done by writing random data on random address
locations and reading back the written data. Data read from RAM is compared to
data written to RAM at previous cycle. During the test, one million random write
and read operations are performed. According to test results, all data written to
RAM was read correctly.

A sample part of waveforms of signals during the verification process of RAM
module are presented in Figure 4.41. Figure 4.42 shows last part of the test
results. Data written to RAM and read from RAM during the last portion of test and
total count of read/write operations and total count of errors are also given in
Figure 4.42. Test results verify RAM module.

71

raignals

Twe
SystemC XTAL Clk
SystemC.PHZ_Clack
SystemC.E_Clock
aystemC. Address_Bus[15:0]
SystemC. W
avstemC. RAM Data_In[7:0]
SystemC.RAM Data Out[7:0]

Figure 4.41:

AM

rifaves

Figure 4.42:

: WRITE Address:
: READ Address:
: WRITE Address:
: READ Address:
: WRITE Address:
: READ Address:
: WRITE Address:
: READ Address:
: WRITE Address:
: READ Address:
: WRITE Address:
: READ Address:
: WRITE Address:
: READ Address:
: WRITE Address:
: READ Address:
: WRITE Address:
: READ Address:
: WRITE Address:
: READ Address:
: WRITE Address:
: READ Address:
: WRITE Address:
: READ Address:
: WRITE Address:
READ Address:
WRITE Address:
: READ Address:
ead-Urite Count
AM Test Ended

Bxde
Bxde .
Bxhc
Bxhbc .
Bx93
Bx23 .
Bxdh
Bxdhb.
Bx76
Bx76 .

Bx9F
Bxf
Bx?3
Bx7?3
Bx15
Ax15
BxdS
BxdS
Bx9?
Bx2?
Bx1?
Bxl?
Bx44
Bx44
Ax80
Bx88
Bxcl
Axcl
BAxed
Bxed
Bxe?
Bxe?
Bx21
Bx21
Bxh8
Bxh8

Data:
Data:
Data:
Data:
Data:
Data:
Data:
Data:
Data:
Data:
Bx1? Data:
Bx1?,. Data:
Bx1 Data:
Bx1, Data:
Bx63 Data:
Bx63,. Data:z
Bx2e Data:
Bx2e,. Data:
Bx28 Data:
Bx28, Data:z
Bx3a Data:
Bx3a,. Data:
BAx14 Data:
Bx14, Data:z
Bxa? Data:
Bxa?,. Data:
Bx85 Data:- BAxbHd

Bx85%, Data: BxbHd

188888 Error Count:

RAM Test Results

72

Waveforms of RAM Test Results

4.12 Electrically Erasable Programmable ROM (EEPROM)

EEPROM module is an implementation of 512 bytes of EEPROM. Reading from
an EEPROM location is same as reading from ROM or RAM, but writing to an
EEPROM location or erasing a location is different. In order to write data to an
address in EEPROM, EEPGM bit of PPROG register should be set first. This
enables EEPROM programming voltage. Write operation should be done following
this action and finally EEPROM programming voltage should be disabled again by
clearing EEPGM bit. Three different erase operations are available for EEPROM
locations. These are row erase, byte erase and bulk erase operations which erase
a row consisting of two bytes, a single byte and whole device respectively.
EEPROM module of MC68HC11 SystemC module uses a file for holding its
contents. Figure 4.43 presents port information of EEPROM module.

eclk

as_in

VIR

Cs_in

a
EEPROM
. in Data 0 (€4

Addrin

= {2
NN N

-] oo

ProgFegln

Figure 4.43: EEPROM Symbol

73

EEPROM module is verified by a two-step test. First step was filing EEPROM
locations with random values, than reading these values and comparing with
originally written values. Second step was clearing EEPROM locations and than
reading these locations and checking if they were cleared correctly. Test results
successfully verified EEPROM module. Figures 4.44 and 4.45 shows test results

of first and second step of test respectively.

EEPROM: Address:Bxif4d Data: BxfA
Original value : BxfA Read value: B@xfA

EEPROM: Address:Bx1f5 Data: Bx44
Original value : Bx44 Read value: Bx44

EEPROM: Address:Bx1f6 Data: Bxda
Original value : Bx3a Read value: Bx3a

EEPROM: Address:Bx1f? Data: Bxh4d
Original value : Bxb4 Read value: Bxh4

EEPROM: Address:Bx1f8 Data: Bxab
Original value : Bxab Read value: Hxab

EEFROM: Address:@Bx1f? Data: Bxb66
Original value : Bx66 Read value: Bx66

EEPROM: Address:-Bxifa Data: Bx5H3
Original value : Bx53 Read value: Bx53

EEPROM: Address:-Bxifh Data: Bx33
Original value : Bx33 Read value: Bx33

EEPROM: Address:-Bxifc Data: Bxh
Original value : Bxh Read value: Bxh

EEPROM: Address:Bxifd Data: Bxch
Original value : Bxch Read value: Bxch

EEPROM: Address:Bxlfe Data: Bxal
Original value : Bxal Read value: Bxal

EEPROM: Address:Bx1ff Data: Bx18
Original value : Bx18 Read value: Bx18

Error Count: @

sxxMEW TEST STATE = WILL HOW CLEAR EEPROM ¢

Figure 4.44: EEPROM Write / Read Test Results.

74

EEFROM: Address:Bx1f? Data: B
Original value : B Read value: A

EEPROM: Address:Bxifa Data: A
Original value : B Read value: @

EEPROM: Address:Bx1fb Data: A
Original value : @ Read value:- @

EEFROM: Address:Bx1fc Data: B
Original value : B Read value: A

EEPROM: Address:Bxifd Data: A
Original value : A Read value: A

EEPROM: Address:Bxife Data: @
Original value : @ Read value:- @

EEFROM: Address:Bx1ff Data: B
Original value : B Read value: A

Error Count: @

=#xEEPROM TEST FINISHED

Figure 4.45: EEPROM Clear / Read Test Results.

4.13 VLSI Implementation of SystemC Modules

VLS| Implementation of the developed SystemC modules is possible using
SystemC to HDL conversion tools. These conversion tools are commercial
applications and trial versions of these tools have limitations. Only ALU module of
the microcontroller SystemC module could be converted into VHDL using the
SystemCrafter tool due to the compiler limitations of the tool. VLSI implementation
of developed overall SystemC model is left as a future work. After VHDL synthesis
of SystemC descriptions using SystemCrafter, VHDL outputs of SystemCrafter is
synthesized for Spartan 3 XC3S50 FPGA using Xilinx ISE 9.2i tool. The results of
the synthesis process are given in Table 4.3.

75

Table 4.3: Synthesis Results of ALU Module

Device Utilization Summary

Logic Utilization Used | Available | Utilization
Number of Slice Flip Flops 71 1536 4%
Number of 4 input LUTs 907 1536 59 %
Logic Distribution

Number of occupied Slices 496 768 64 %
Number of Slices containing only related logic | 496 496 100 %
Number of Slices containing unrelated logic 0 496 0%
Total Number of 4 input LUTs 909 1536 59 %
Number used as logic 907

Number used as route-thru 2

Number of bonded I0Bs 40 97 41 %
IOB Flip Flops 28

Number of GCLKs 1 8 12 %
Total equivalent gate count for design 6747

Additional JTAG gate count for IOBs 1920

76

CHAPTER 5

VISUAL SIMULATION PLATFORM

In this thesis study, a visual simulation platform is developed using co-design
capabilities and object oriented nature of SystemC. Visual simulation platform
consists of SystemC model of MC68HC11 microcontroller unit, its peripheral
devices, test bench modules and user friendly visual simulation software that is
designed for controlling simulations by configuring test bench, starting simulations
and observing simulation results. Structures of the developed visual simulation
platform, test bench modules and finally visual simulation software are explained
in this chapter.

5.1 Structure of Visual Simulation Platform

Visual simulation platform consists of three main parts. These are MC68HC11
SystemC model with its peripherals, test bench and visual simulation software
which are presented in Figure 5.1. Test bench contains SystemC models of test
hardware. Visual simulation software outputs test bench configuration files that are
used to configure which test module is connected to which port and whether it is
enabled or not and to configure operations of test hardware models in test bench.
Visual simulation software also outputs microcontroller program file that is stored
into ROM of microcontroller unit. Test bench is connected to MC68HC11 via input
and output ports and applies signals to and reads signals from MC68HC11
according to its configuration. After simulation ends, test bench module outputs a

simulation results file that contains information on ports of microcontroller unit and

77

internals of test modules for each cycle of simulation process. MC68HC11 model
outputs simulation result files that contain information on internal working of
microcontroller unit such as state of microcontroller, address and data bus signals,
register values and RAM content at each cycle.

o

hfcrocontr.
Program

Visual
Simulation
Software

7 SEGMENT
I DECODER DRIVER

ALY o Logic Indicator

Simulation
Result
Files

TEST BENCH

Figure 5.1: Visual Simulation Platform

5.2 Test Bench

Test bench consists of SystemC models of test hardware that are available in
most electronic experiment kits. These hardware modules are designed at a much
higher abstraction level than microcontroller unit. This is a powerful ability of
SystemC, because designing test hardware in a higher abstraction level than
tested system saves great time of system designers. Test bench is configurable by

78

a configuration file. According to the configuration file, some hardware modules
are enabled or disabled and they are connected to different 1/O ports. Test
hardware contained in test bench are an 8-bit binary switch, a push button pulse
generator, some TTL oscillators, seven segment BCD decoder / driver, seven
segment common anode / common cathode displays, logic indicator and serial

monitor.

8-bit binary switch is an output module that takes a configuration file and outputs
specified binary data value at specified times by configuration file. Push button
pulse generator outputs a pulse at specified time using push button state and
timing information on a configuration file. It generates both negative edge and a
positive edge pulse at the same time. TTL Oscillators module contains four
oscillators. It has an output for each oscillator. These TTL oscillators have
oscillation frequencies of 100 KHz, 10 KHz, 1 KHz and 100 Hz. Seven segment
BCD decoder / driver module is an input module that decodes BCD value on its
inputs and converts it to a form applicable to a seven segment display. Seven
segment display module reads its inputs and outputs states of seven segment
displays which can be configured as common anode or common cathode displays.
Logic indicator module is a simple module that just saves binary data on its inputs
and time information of value changes on this data. Serial monitor has serial
transmitter and receiver and it outputs serial data that is read from a file and
shows the data that is received serially.

5.3 Features of Visual Simulation Software

Visual simulation software is the end-user face of the simulation platform. The user
interface is designed in a way that it guides user from first to last step of a
simulation process. First step of simulation process is to write assembly codes for
microcontroller unit in code editor window. Then, the written code is compiled to
Motorola s-record (.s19) file and this s-record file is converted to machine code
(.hex file) that will be placed in ROM. After machine code file is generated, this file

79

is downloaded to microcontroller ROM. At this point program waits for user to
finish configuration of test bench. After test bench configuration is finished, user
can select simulation duration and start a simulation. When the simulation ends,
simulation results are presented on main screen of program. User can examine
simulation results that consist of test hardware information and information on
microcontroller internal workings. Details on program and using graphical user

interface are explained in following subsections.

5.3.1 Main Window of Simulation Software

Main window of visual simulation software is presented in Figure 5.2. Regions in
main window are labeled with capital letters in the figure. Region which is labeled
with ‘A’ is program file region. User can write assembly code and convert written
code to machine code using “Code Editor” and “Machine Code Generator” buttons
respectively. ‘B’ region contains condition codes register information. Condition
code register information is update at every clock cycle. Region labeled with ‘C’
shows contents of registers in register file before and after the selected cycle or
instruction. Region ‘D’ is test environment region. In this region user can download
machine code into microcontrollers ROM, configure test bench and test hardware,
select simulation duration, run simulation and view simulation results using
buttons. After a simulation ends, executed instructions are presented as a list in
region ‘E’. Region ‘F’ shows information on internal cycles of instruction execution.
This region is filled when user selects an executed instruction. Region ‘G’ shows
values of special function registers for select clock cycle.

80

e Imglmqhm e e fncon = T Sian T TR
Reg | Hes Dz |H-aa = Dt k- k] peode Feich OO (PCHPCL) 10 Hen| R
o Cade K =313 1Mz L H1a 1M e oo Bt Eescustion EMC [PCHPCL] ar M=]
stiloe 1] |7 om o
e P WF X e dFF =5
Cancibor Codes - Alter I e mms |
Inthasction DoEW @Em e &1
i : A)
50 R HE T Bk N [. o
N 2 ¥ CF R ™ 8
Tesl Erviivament Enscubofl 5 epusce Geeial Furcifin Flegnss
1 Gelect HEX File | IS ; Dosnfad HENbS HOM Cpcle formbar)| Py Opeods| Addk| Opl | Op2 Cpd| & | |Fagde | ks Ceced &
e — S Te————t 1 | FORTA [
5 I 0 WO WMMom B - |]
] i 0 U WM W B - | PORTC 1]
i 2 0oV R | FORTE 1]
[o O RH : | FORTEL o
[0 DIChA mw - - | (o [1]
1 0 DECE MH - . | PORTD]
] 0 DECH MM . 0]
I O T 1 S PORTE CO 1%
] 0 moh M- - GORE ®]
2% 0 MOF R ICW ™]
211 0 ROLA MH . locin ™ o
na 7} T r |TENTMy M)]
23 0 AL BH - |Tre &2 ®
m 0 STk DA M@ TCIH ™]
] 0 STaB DR o TClksl ™]
M 0 sk DB m T m]
24 0 LDAF DA m TCe ™]
245 0 ADCA DR M = T o
o 0 apCh DM om [Tel W 0
E 0 EDAR DA ™ TOCHHl =
x4 0 AL EXT M 00 TOCHLa) FF 5
] 0 AL BT W 00 TOCHN) P 5
F 0 RR BT mom 10CaLal R =4
Taxt Banch Configuston N 9 COM E<T W [0 TOC3H] FF 5
FTH 0 BOR M) M 0 TOCHLa) FF 5
TEST BENCH % 0 BET WO MW TOCAN) P #5
3 0 ML BT M oM - |TocaLy F rd
: (= = 0 BRET DA 0 M E7 |TocsH) R 25
3. ¥ TustBenchlosfig Complsed w D00 |is - Fien 8 A @ AR B a2 - -THE{'“ F o5
(48

Figure 5.2: Main Window of Visual Simulation Software

Main window of simulation software is arranged in a way that it guides user
through simulation process. Buttons are located in an order and numbered for
simulation steps and they are not enabled until next step of simulation process is
using that button.

81

5.3.2 Code Editor

Visual simulation tool has a built-in code editor that works like a simple text editor
program. User can write or modify 68HC11 assembly programs using this editor
and save them in “.asm” format. A screenshot from code editor window is shown in
Figure 5.3.

Pragram File Internal Registers I3

Code E ditor Before Instruction After [nstruction C
Feg | Hew Dec Feg | Hex Dec]

{® g8HC11 Simulator Code Editor
File W[

Mew el H#a45 ~
Open... Chrl+0 Hod

Save Chrl+5

DECA

DECE

DECA

ABA

IMGCA,

NOF

ROLA,

SBA

ABA

STAA $0000
STAE $0001
LDAS $0007
LDAB $0000
ADCA $0000

- - Z W

Figure 5.3: 68HC11 Assembly Code Editor Window

82

5.3.3 Machine Code Generator

User can compile programs to generate MC68HC11 machine codes. For machine
code generation, visual simulation program uses Motorola’s assembler program
“68HC11AS11.exe” and “hex to bin converter v.2.00” from “Tech Edge Pty. Ltd.”
which are available for free download on the internet. These conversion steps are
done manually by user for better understanding of machine code generation steps
starting from an assembly code file (“.asm” file). Figure 5.4 shows a screenshot

from machine code generator window.

1% dB13 1814 18144 iy

I 0o0a 1]

M achne Code
Generator

:: /™ Machine Code Generator

Step 1 SE'Egtuﬁfg:mb'P D:\Be.._Di. ts\Win1 Wi, nT\bin\Diebughprogram . asm
Hint
Step 2 asm = 19 | Ok Hex file is created. Now you

can close this window and
run simulation.

Step 3 19 =r hex 0K

Info

A "_hex" file contains program codes in 68HC11 machine
language.

Figure 5.4: Machine Code Generator Window

83

At first step, user selects the “.asm” file which was written in code editor or in any
other editor. Then user converts this file to Motorola s-record file (“.s19” file) format
using a button labeled “.asm => .s19”. At this moment, simulator runs Motorola’s
68HC11AS11ASM compiler at background. After completing “.asm” to “.s19”
conversion, conversion from “.s19” to machine code file (“.hex” file) format is done
using “.s19 => .asm” button. Simulator runs “hex to bin converter v.2.00” from
“Tech Edge Pty. Ltd.” for this process. This step gives machine code file that can
be downloaded to microcontroller’'s ROM for simulation purposes. In the code
generator window, “Hint” space gives guides user for steps of machine code
generation and “Info” space gives simple information on the file formats that are
generated on each step.

5.3.4 Preparing Simulation Environment and Running Simulation

In the main window of visual simulation software, test environment region is used
for downloading machine code file into microcontroller's ROM, test bench
configuration and running simulation. Figure 5.5 shows a screenshot from this
region. Everything needed by user for preparing and running a simulation using a
machine code file is available in this region.

84

— Test Environment

1. Select HEX File | TESTALL HEX] Download HEX to ROM |

Serial kanitor

- 7 SEGMENT
. DECODER DRIVER
e Control Unit jw

o | .
[
o
O e
o
m
[
['s
Q
o

PORT C |

Logic Indicator

Test Bench Configuration
TEST BENCH

3 ¥ TestBenchConfig. Completed 4 I 1EIDEI|us LI Run |

Figure 5.5: Test Environment Region of Simulation Program

When machine code file is ready, it can be downloaded to microcontroller ROM
using “Select .HEX File” and “Download .HEX to ROM” buttons that are shown in
Figure 5.5. When a machine code file is selected, file name is updated on main
screen and ROM button is enabled when the selected machine code file is put into
microcontroller’'s ROM. Viewing ROM locations is explained in following
subsections.

85

After user program is put into ROM, test bench configuration should be done by
user. User should configure hardware modules of test bench modules that are

needed in simulation.

Configuration of 8-bit binary switch operation can be done by using its button on
test bench which can be seen in Figure 5.5. When user clicks on this button, a
new window opens as shown in Figure 5.6. After “Start Configuration” button is
pressed, user can generate a sequence of binary data that will be applied at
different times. Switch conditions are selected, timing of the switch configuration is
selected and it is added by using “Add” button. When configuration ends, it should
be saved to take effect. Any row can be removed using “Remove” button.

Tezt Ernvironment
NS [g Git Binary Switch M=

Switch Conditions

i r ¥~ ¥ M I WO

Walue [Hex.] O=2D0

e 120 [us | Add
Time [uz) “Walue [Hex) Save
1 an
20 a6 Remove
100 12
200 28 Clear

E nd Configuration

TEST BEN

Figure 5.6: 8-bit Binary Switch Configuration

86

Configurations of push button pulse generator and TTL oscillators are very similar
to configuration of 8-bit binary switch. Only difference is push button has only one
bit released or pressed states and TTL oscillators have one bit power on and
power off states instead of 8-bit information. Window used for push button pulse

generator configuration is shown in Figure 5.7.

Preszed

100 |u3 |

Time [uz] | State |
110 Preszed
120 Releazed
150 Prezzed Hemove
170 Releaszed

Save

Clear

TTL |
Czcillatars

End Configuration

TEST BENCH

Figure 5.7: Push Button Pulse Generator Configuration

87

Configuration of serial monitor can be done by using “Serial Monitor” button.
Figure 5.8 shows a screenshot from serial monitor configuration window. User can

add any text that will be sent at any desired time.

f® Serial Monitor

Summary Serial D ata Infarmation
Hexadecimal

Direction | Time [uz] | Length | Data

Serial Monitor Test Data
Tw 200 b4 This data will be sent fro...

Configuration

T ; Remove | A | 300 [us »| [This data will be sent hom serial maritor to MCEEHCTT
Configuration ave
Clear Add

Figure 5.8: Serial Monitor Configuration

Test bench port connections can be configured using “Test Bench Configuration”
button in test environment. This button opens a new window for directing test
hardware input / output pins to desired port pins of microcontroller. User can also
enable or disable test hardware modules. Figure 5.9 shows test bench port
configuration window. User should first press “Start Configuration” button, make
necessary changes and save configuration before ending simulation for

configuration to take effect.

88

™ Test Bench Configuration

End Configuration Save Configuration ezl s
7 Segment Dizplays F¥ Enabled 7
Let Display Riight Display
¥ Enabled 7 Connected to ¥ Enshisd 7 Connected to:
F |pC7 - F [PB7 -
AFCs = A [pca = | 7 SEGMENT DECODER-DRIVER
- o e 1 [) D P
-‘ °— -' °— Al B1 c1 D1 A2 B2 cz D2
E—G ee 2l u_G By = [pc7 =llrce ~llPcs ~l[Pca ~l[rcs ~[[Fcz ~lPct ~l[Pco ~]
_a e_c FC3 :" a_c FCE b Logic Indicatar
©F |rce - ©F |fco -
E [rco -l E [rce T [% Erabled? LOGIC INDICATOR |
" Com. Anode 1+ Com. Cathads " Com. Anode Com. Cathods l 1 1 1 1 l 1 l
Binary Switches
W Enatled ? lps7 -lfres -l[pes ~llre4 -lPe3 -[[rez ~llre1 -llPe0 -]
L L L L TTL Dscilators Fush Eutton Pulss
¥ Enabled 7
W Enabled ? PE7 =
100kHz IFE7 = I‘
T0kH: |PEE = .+ PULSE
I 4 4 4 3) s 4 1kHs |PEE < —0
7, 6 5 4 3 2 1] [ee o [ree +]
[Fr3 =JfFoz ~l[Fo1 =f[roo =llFEz =lfrez =llPEr =lPED =] 100 Hz

Figure 5.9: Test Bench Configuration Window

When configuration of test bench is finished, user should check “Test Bench
Config. Complete” box, select simulation duration and press “Run” button.
Program waits confirmation before running simulation. Figure 5.10 shows these
steps. Visual simulation program runs executable file of MC68HC11 SystemC
model. This is a flexibility of using SystemC for co-design. SystemC simulations
can be performed by only executing a program file.

89

—|_|_|_|_|_|_L Oscillator Do you want to perform simulation? [B€

TestBench Configuration

TTL

Ozcillatars

Py sSimulation Time = 10000 us
\'-:/ Run simulation #

TEST BENCH

Figure 5.10: Running Simulation

5.3.5 Viewing Simulation Results

When the simulation ends, program automatically fills execution sequence table.
This table gives information on instructions in a sequence. Execution time of
instruction, opcode, operands, addressing mode and opcode page of instruction
can be seen on this table. Op1, Op2 and Op3 columns present operands. If
number of operands is smaller than three a dash (“-”) is put into empty cells. A
screenshot of execution sequence table is given in Figure 5.11. When an
instruction is selected, internal cycles execution information of that instruction is
given in instruction cycles table as shown in Figure 5.11. This information consists
of time, microcontroller state, address bus, data bus and read/write signal.

Because, this visual simulator actually runs a SystemC simulation, it can access
available information on internal workings of microcontroller unit. This is a very
important feature of this simulator which makes it different from standard
simulators that are available in the market or in the internet for free download. This
feature allows better understanding of internal workings of microcontroller. Values
of special function registers are presented for selected cycle when an instruction
or instruction cycle information is selected. Values of internal register values and
condition code register information are presented as in Figure 5.12.

90

Ingtruction Cycles

Cycle | Time [us)
176 352
177 304
178 356
179 358
180 360
13 362

Execution Sequence

State

Opcode Fetch

Read Direct Address
Read Execution Operand
8 Bit Execution

Calculate Rel. Addr. Low
Calculate Rel. Addr. High

Address Data | Ao

E034 [PCH.PCL) 12 [Memn) R
E035 [PCH.PCL) M [Mem) R
00071 [- DataBus) 0E [Mem] A
E036 [PCH.PCL) A, [kem) A
E037 [PCH.PCL] E7 [Mem] A
FFFF [FF.FF] 00 [kem] A

Special Function Reaisters

Cycle | Time [uz)| Pg| Opcode | Addr| Opl | Op2| Op3| & Fegister | Hex | Decimal
1 - - - - - - PORTA oo 1
a 10 IZI LoD MM 03 B1 PIOC oo 1
a 16 n LD= IMM 00 18 PORTLC oo n
11 22 1] DR IMH - PORTE oo 1]
52 104 1] FOI IMH PORTCL 00 1]
93 186 0 DECA IMH DDRC oo 1]
a5 1490 0 DECE IMH FORTD oo 1
a7y 194 0 DECA IMH DDRD oo 1
a3 198 1 ABA IMH PORTE Co 192
101 202 1 IMCA INH CFORC oo 1
103 205 1] HOP IMH OCTM oo 1]
105 210 0 ROLA IMH ociD oo 1]
107 214 1] SBA IMH TCMTIHI] 00 1]
109 218 1] ABA IMH - TCMT[Lo) B3 174
111 222 0 5Tas DIR 0O TIC1(Hi] oo 1
114 224 0 STAB DIR M1 TIC1Lo] 0O 1
117 234 0 LbAad DIR O TICZ[Hi] oo 1
120 240 0 Lbae DIR 0O TICZLo] 0O 1]
123 245 0 ADCA DIR 0O TIC3HI] oo 1
126 252 0 ADCE DIR 0O TICILo] 0O 1]
129 254 0 EORE DIR 0O - TOCI[Hi] FF 2585
132 264 1 ASL ExXT 00 00 TOC1[Lo] FF 255
138 276 1 ASL EXT 00 00 TOC2Hi) FF 255
144 284 1 ROR EXT 00 01 TOCZ[La] FF 2085
150 30n n COM E=T 00 00 TOC3HI FF 255
156 Mz 0 BCLR WD 01 00 TOC3Lo] FF 255
163 326 0 BSET IND 0O EIEI TOC4[Hi] FF 2585
'I T-"EI 240 1] IMC E><T EIEI TOC4Lo] FF 2585
mm BRSET m TOCSH] FF 255
1 82 364 BB INH - TOCHILol FF

Figure 5.11: Instruction and Special Function Registers Information

91

T3
on
o

<

Frogram File Intemal Registers

Code E ditor Befare |nstruction After Inztruction
FReg | Hex Dec Feg | Hex Dec
= [3813 15123 [813 15123
Machine Code
Generator I 0000 o
SP O0FF 255 SP - O0FF 255
Condition Codes - After PC EO0ZE 57307
| mstruction i) 4055 19797 i) 4055 19797
A 40 7
shoxlHE 1T g gs 5 B 55 55
MIT ZW Wi T CCR 01 1

Figure 5.12: Internal Registers Information

User can view RAM, ROM and EEPROM contents for each cycle or instruction
selected. ROM information is cycle independent because it is read-only and does
not change in run time. Figures 5.13, 5.14 and 5.15 present screenshots of RAM,
ROM and EEPROM content windows respectively.

= Memory Content

RAM Content - Cycle:[25]
Offset| 0 |1 2 3 4 5 |6 7 18 |9 A B |C i E F
oo oo oo oo oo oo F2 oo oo oo oo 0o oo oo oo oo oo
10 0o oo oo 0o oo oo 0o oo oo oo oo od 0o 0o oo 0o
20 ooooo 0o oo oo 0o 0o oo oo oo oo oo 0o ooon 0o
30 ooooo oo ooooo oo 0o ooooo oo o000 oo ooon oo
40 ooooo 0o oo oo oo 0o ooooo 0o o000 0o oooon oo |
50 oo oo oo 0o oo oo 0o oo oo oo oo oo oo oo oo oo 1
£0 oo oo 0o 0o oo oo 0o oo oo 0o 0o oo 0o oo oo 0o !
70 ooooo oo oo oo oo 0o oo oo 0o oo oo 0o oooon 0o
80 oooo 0o oo oo 0o 0o oo oo 0o oo oo oo oo oo oo
90 oo oo oo oo oo oo 0o oo oo 0o ooooo oo oooon oo
A0 00 0o oo oo oo oo 0o oo oo 0o oo oo oo oo oo oo
EO 00 00 0o 0o oo oo 0o oo oo 0o 0o oo 0o 0o oo 0o
co oo oo 0o oo oo 0o 0o oo oo oo oo oo 0o ooooon 0o
Do 0o oo oo oo oo oo 0o oo oo oo o000 0o oo oo oo
EQD 00 oo 0o oo oo oo 0o oo oo 0o oo oo 0o oo oo oo
Fo oo oo oo oo oo 0o 0o oo oo oo oo oo oo oo oo oo

Figure 5.13: RAM Content Window

92

7™ Memo ry Content g

ROM Content

Offset| O 1 2 |3 |4 5 E |7 8 3 |a |B |C D B |E i
@i &5 &0 16 C5 03 4 B CC 33 939 5 F2 D7 05 9 05
oo CE oo 02 EB O3 1B 8B 80 9 05 0O 0OC 86 B0 16 CB
ooz0 o2 4 GF CC 33 939 o6 F2 DY 05 9% 05 CE 00 02 EB
o030 03 1B 8B 80 S 05 0D OC 03 1B 4 VJE E0O 00 3F
o400 40 4 42 43 44 45 46 47 43 43 48 4C 4D 4B 4F
oos0 50 ®1 52 53 54 855 BE B7 BB 53 % 5C 8D BE &F
oos0 B0 1 62 63 64 B5 EBE K7 B3 B3 BA BB BC BD BE EF
ooFa 70 A 207 ¥4 7w F8 W78 ™7 B D FEFF
oos0 80 &1 82 83 84 85 86 B &8 83 8 8B BC 8D BE &F
oo30 90 7 32 33 34 3% % 3% 98 93 % 3 93 3 9
oa0 A0 A1 A2 A3 A4 AR AR A7 AR A3 AA AR AC AD AE AF
ooeo BOO B1 B2 B3 B4 BS BE BY BZ B BA BB EBC BD BE BF
ooco co C1 ce 3 o4 O C6 CY C& Cy C& CB CC CD CE CF
oo 0O 0 D2 D3I D4 DS DE DY DB D3 DA DB DC DD DE DF
O0ED ED E1 E2 E3 E4 E5 EE EF¥ EB EI EA EB EC ED EE EF
oo0F0 FO - F1 F2 F3 F4 F5 FE FF FB8 F3 FA FB FC FD FE FF ﬂ

FEELEER

£

Figure 5.14: ROM Content Window

= Memory Content

EEPROM Content - Cycle:[156]

Offset| 0 1 2 g 4 5 E 7 g | & E & D E F -
goo 00 00 00O OO0 OO0 OO 00 00 00 00 Qo0 00 00 00O 00 od
000 00 00O 00 OO0 00 Q0 00 00 00 Qo0 00 00 00O 00 od
020 00O 00 OO OO OO OO0 Q0 OO0 OO o00 Qo0 00 00 0O 00 od
00 00 00 00O 00 OO0 o0 Q0 00 00 o00 Qo0 00 00 OO 00 od
040 00O 00 00O OO0 OO OO0 Q0 00 00 00 Qo0 00 00 00O 00 0d
080 00 00 00O 0O OO 0o o0 00 00 00 00 00 00 00 00 0o
(k0 0O 00 0O 0O o oo o0 00 00 00 00 00 00 00 00 0o
070 0O OO OO 0O O Q0o o0 00 00 00 00 00 00 00 00 00 —
0g0 0O OO0 OO 0O O OO o0 00 00 00 00 00 00 00 00 0o
00 00 00 00O 00 OO0 0o o0 00 00 00 00 00 00 00 00 0o
040 00O 00 00O 00 o oo o0 00 00 o0 00 00 00 00 00 0o
(B0 0O OO0 OO 0O OO OO o0 00 00 00 00 00 00 00 00 0o
gCo 00O 00 0O 0O OO 0o o0 00 00 00 00 00 00 00O 00 0o
b0 0O OO 00O 0O o oo o0 0p 00 00 00 00 00 00 00 0o
(EO 0O OO OO 0O OO oo o0 00 00 00 00 00 00 0O 00 0o
QFO 0O OO 0O 0O o oo o0 00 00 o002 4o o0 00 00 00 0o j

Figure 5.15: EEPROM Content Window

93

CHAPTER 6

CONCLUSIONS

Today’s complex systems contain both hardware and software parts. Hardware
may contain multiple processors, application specific integrated circuits and
subsystems. Competition in market pushes companies to produce area and cost
effective systems in a short time-to-market period. As a consequence, designers
tend to bring all hardware and software of their system together on a single chip
with the help of developments in VLSI techniques. Such a system is called system
on a chip (SoC). IP cores are descriptions of hardware modules that are ready to
be used in SoC designs. In order to use previous know-how on a specific
microprocessor, a designer use IP core of that microprocessor in a system design.

Compound design of hardware and software parts of a system allows these parts
to be brought together in earlier stages of design flow and allows design of whole
system to be verified before hardware prototypes are manufactured. SystemC, as
a system design language, is a good co-design and co-verification platform for
system-on-a-chip designs. As SystemC allows different abstraction level designs
for different modules of a system, designers can use high abstraction levels for
test bench devices while they are using low abstraction levels for system hardware
modules. This approach reduces effort spent on test bench design and shortens
testing periods. If properly written, SystemC codes are synthesizable to hardware
description languages with the help of automatic conversion tools and no manual
conversion from SystemC to HDLs is needed.

Goal of this thesis has been to develop SystemC implementation of MC68HC11
microcontroller and to provide a user friendly simulation platform with test bench

94

hardware models. For this purpose, original microcontroller architecture and
operation with its peripherals is studied, hardware architecture of microcontroller is
implemented in SystemC with the ability of giving information on its internal
workings for simulation purposes. Microcontroller core modules are initially
designed and tested separately and these modules are brought together with
microcontroller software to form initial microcontroller system. Refinements on
initially designed core and design of peripheral devices are done using co-design
capabilities of SystemC. Microcontroller hardware and software are co-verified
using SystemC. System modules are RAM, ROM, ALU, register file and CPU
controller unit that constitute CPU of MC68HC11. Serial communications unit,
main timer unit and handshake I/O unit modules are peripheral devices of the
microcontroller. Microcontroller implementation with its peripheral devices is
almost identical to original MC68HC11E9. SystemC implementation of the
microcontroller does not contain analog to digital converter peripheral because
data structures for analog hardware modeling are not included in standard
SystemC library.

For making simulations on microcontroller implementation, a reconfigurable test
bench is designed in SystemC using high abstraction levels. Test bench contains
test hardware modules such as TTL oscillator, binary switch, seven segment
decoder/driver and serial monitor. Any device in test bench can be disabled or
enabled and connected to any port of microcontroller. User can configure test
bench modules for generating desired signals with desired timings.

For a user friendly interface, a visual application is developed in Microsoft .NET
platform in order to allow user to write microcontroller programs, reconfigure test
bench, perform simulations of microcontroller system and view simulation results.
This visual application is a layer between SystemC implementations and user.
When user runs a simulation in visual application, SystemC simulations of system
are performed and simulation results are dumped to files. The visual simulation
application communicates with SystemC implementation of microcontroller and

test bench using input and output files. It passes configuration parameters given

95

by user to implemented modules and reads simulation results and presents to user
in a clearly understandable format.

Using a visual simulation platform for co-simulation of microcontroller programs
and SystemC implementation of suggested microcontroller hardware made
verification process easy to perform and simulation results clearly understandable.
Different simulations are performed on designed microcontroller and these
simulation results verified that the designed microcontroller comply with original

microcontroller.

The designed simulation platform architecture is expandable and is easily
applicable to different systems. It can be used by design teams for performing
simulations on their system designs and visualizing simulation results. Using or
developing IP cores that give internal information for simulation purposes and
developing a visual simulation platform may reduce effort on test and verification
and help test personnel to easily discover errors in system.

The developed simulator actually runs cycle accurate hardware and software
simulations of microcontroller unit and test bench. So it is not working as fast as
non-timed microcontroller simulators that are widely available. Simulation duration
is a linear function that is directly proportional with microcontroller simulation time
and inversely proportional with microcontroller clock frequency. On a modern
computer with 1.5 GHz CPU, simulation speed is about 7000 external clock cycles
/ second. This means about 150 times slower simulations compared to real time. If
average execution time of MC68HC11 instructions is assumed to be 5 bus cycles,
about 350 instructions can be simulated per second. Simulation run time is a
disadvantage of suggested simulation platform but it has an advantage of
presenting internal workings of microcontroller for every micro cycle and allows
better understanding of microcontroller operation. It is impractical to use simulation
platform for long lasting simulations if only concern in doing simulation is observing

microcontroller program performance. This simulation platform is useful if the user

96

is concerned with cycle accurate information on internal workings of

microcontroller hardware when it is running a given program.

For the future works, SystemC implementations can be converted into HDL by
using commercially available tools for observing area and speed efficiency and a
visual simulation platform that supports both SystemC and HDL simulations can
be suggested. Simulations on HDL model or layout should be carried and signal
values on specific points and 1/O ports of microcontroller should be compared with
simulation platform results before hardware implementation is done. Designed
microcontroller core can be employed in a larger system and simulator can be
improved for that system.

97

[1]

2]

3]

[4]

(5]

[6]

[7]

(8]

[9]

[10]

[11]

REFERENCES

Khan A., “Recent Developments in High-Performance System on Chip”,
IEEE International Conference on Integrated Circuit Design and
Technology, 2004

Schulz S., Rozenblit J. W., Mrva M., Buchenrieder K., “Model-Based
Codesign”, IEEE Computer Society Press, August 1998

Benmohammed M., Merniz S., “Multi-language Co-design Environment
for Controller System Design”, Journal of Computer Science 1 pp. 337-
340, Science Publications, 2005

IEEE Computer Society, “IEEE Standard SystemC Language Reference
Manual”, IEEE, New York, USA, 31 March 2006

Grotker T., Liao S., Martin G., Swan S., “System Design with SystemC”,
Kluwer Academic Publishers, 2002

Synthesis Working Group of OSCI, “SystemC Synthesizable Subset”, 23
December 2004

Celoxica, “Agility Compiler’, www.celoxica.com, Last accessed:
December 2007

SystemCrafter Ltd., “SystemCrafter”, www.systemcrafter.com, Last
accessed: December 2007

Calazans N., Moreno E., Hessel F., Rosa V., Moraes F., Carara E.,
“From VHDL Register Transfer Level to SystemC Transaction Level
Modeling: a Comparative Case Study”, Proceedings of the 16th
Symposium on Integrated Circuits and Systems Design, IEEE, 2003

Zabawa C. M., Wunnava V. S., “Efficient Digital System Design
Methodology with SystemC Register Transfer Level Modeling”, IEEE
SoutheastCon Proceedings, 2004

Synopsis Inc., www.synopsis.com, Last accessed: December 2007

98

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

CoWare Inc. www.coware.com, Last accessed: December 2007

Organization of OpenCores, “OpenCores.org”, www.opencores.com, Last
accessed: December 2007

Jonsson B., “A JPEG Encoder in SystemC”, A thesis submitted to Lulea
University of Technology, Tokyo, 2005

Kesen L., “Implementation of an 8-bit Microcontroller with SystemC”, A
thesis submitted to The Graduate School of Natural and Applied
Sciences of Middle east Technical University in The Department of
Electrical and Electronics Engineering, Ankara, Turkiye, November 2004

Zengin S., “SystemC Implementation of a RISC-Based Microcontroller
Architecture”, A thesis submitted to The Graduate School of Natural and
Applied Sciences of Middle east Technical University in The Department
of Electrical and Electronics Engineering, Ankara, Turkiye, December
2006

Sdézen S., “A Viterbi Decoder Using SystemC for Area Efficient VLSI
Implementation”, A thesis submitted to The Graduate School of Natural
and Applied Sciences of Middle east Technical University in The
Department of Electrical and Electronics Engineering, Ankara, Turkiye,
September 2006

Kazancioglu U., “The Implementation of a Direct Digital Synthesis Based
Function Generator Using SystemC and VHDL”, A thesis submitted to
The Graduate School of Natural and Applied Sciences of Middle east
Technical University in The Department of Electrical and Electronics
Engineering, Ankara, Turkiye, February 2007

Mert Y. M., “SystemC Implementation with Analog and Mixed Signal
Modeling for a Microcontroller”, A thesis submitted to The Graduate
School of Natural and Applied Sciences of Middle east Technical
University in The Department of Electrical and Electronics Engineering,
Ankara, Turkiye, May 2007

Freescale Semiconductor, Inc., “M68HC11 Microcontrollers Reference
Manual”, M6BHC11RM/D Rev.6, April 2002.

Freescale Semiconductor, Inc., “M68HC11E Family Data Sheet”,
M68HC11E Rev.5.1, July 2005

99

APPENDIX A

M68HC11 INSTRUCTION SET

Table A.1: Information on Operands

Operands

dd

8-bit direct address. High byte = $00. Low byte = ($00 - $FF)

ff

8-bit positive offset which will be added to index register. ($00 - $FF)

hh

High-order byte of 16-bit extended address

Low-order byte of 16-bit extended address

8-bit immediate data

Jj

High-order byte of 16-bit immediate data

kk

Low-order byte of 16-bit immediate data

mm

8-bit mask data

rr

Signed relative offset which will be added to program counter. ($80 - $7F)

100

Table A.2: Information on Condition Codes

Condition Codes

- | Not affected

0 | Cleared

1 | Set

A | Set or cleared depending on operation

| | Can be cleared but not set

101

Table A.3:

M68HC11 Instruction Set (1/7)

. ° o Addressing Instruction Condition Codes
v v Mode Opcode | Operand [Cycles | S [X JH [1 N[Z[V]ec
ABA Add A+BE=A INH 1B — 2 - - A — | A A A A
Accumulators
ABX AddBto X DX+ (00 B) = IX INH 34 — E] - - - — = - - —
ABY AddBtoY IY +({00:B) = IY INH 18 3A — 4 - - - == - - =
ADCA (opr) | Add with Camy A+M+C=A A IMM EERN EEA 2 — — A —] A A A A
toA A DIR 99 |ad 3
A EXT B9 |mhh 11 4
A IND, X A |fE 4
A IND, Y 18 AQ|fE 5
ADCB (opr) | Add with Carry BE+M+C=B B MM GO ldii 2 —_- - A — | A A A A
toB B DIR D9 a4 3
B EXT F3 |nn 11 4
B IND, X E9 |ff 4
B IND, Y 18 E9 |ff 5
ADDA (opr) | Add Memory to A+M=A A MM 8B |ii 2 —_- - A — | A A A A
A A DIR 9B |ad 3
A EXT EB |kh 11 4
A IND, X AB |ff 4
A IND, ¥ 18 AR |ff 5
ADDB (opr) | Add Memory to BE+M=BE 5] MM CB [ii 2 —_ - A — [A A A A
B B DIR DB |44 3
B EXT FE |kh 11 4
E IND X EB |ff 4
B IND, Y 18 EB |ff 5
ADDD (opr) |Add16-BittoD | D+ (M:M+1) =D MM c3 |37 kk F] — — — — | & & & &
DIR D3 a4 5
EXT F3 |kh 11 &
IND, X E3 |ff &
IND, Y 18 E3 |ff 7
ANDA (opr) AND A with AM=A A MM 84 |ii 2 - — — —| 4 A [
Memory A DIR a4 |aa 3
A EXT B4 |kh 11 4
A IND, X A4 |fE 4
A IND,¥ 18 A4 |£f 5
ANDB (opr) AND B with BE«M=BE B MM G4 lii 2 —- - = — | A A 0 —
Memory =] DIR D4 a4 3
B EXT F4 |mn 11 4
B IND, X E4 |ff 4
B IND, Y 18 E4 |ff 5
ASL (opn Arithmetic Shift EXT 78 |rh 11 -] e A A A
Left - IND X 68 |ff 3]
Rl NDY [18 e |ef 7
ASLA ‘Arithmetic Shift A INH 48 — 2 — — — — [A & 4 &
Left A
D)
o BF 2]
ASLE ‘Arithmetic Shift E INH 59 — 2 — — — — [A & 4 &
-
D= =0
C b7 1]
ASLD Arithmetic Shift INH 05 — 3 - - — — | & A A A
Left D OeCIiIT~rrrr=0
G BT A BDLET B bO
ASR Arithmetic Shift EXT 77 |mh 11 [- — — —| & A A A
Right e e IND,X 67 | 6
b7 b C IND, Y 18 67 |ff 7
ASRA Arithretic Shift A INH 47 — 2 — — — —| A A A A
ROMA | i
E7 e C
ASRB Arithmetic Shift B INH 57 — 2 - - — — | & A A A
Right B i -
E7 e C
BCC (ral) Branchif Carry TC=0 REL 24 |rr 3 —_ = = == = = =
Clear
BGLR (opr) Clear Bitis) Ms {mm) = M DIR 15 |ad om & — — — —| a4 & @0 =
(msk) IND, X 10 |ff mm 7
IND,Y 18 10 |ff mm 8
BCS irel) Branch if Carry ?C=1 REL 25 |rr 3 - - = == = = =
Set
BEQ (ral) Branch if =Zaro ?Z=1 REL 27 | 2 - - - = - - =
BGE (rel) Branchif AZero TMEV=0 REL 2C |rr 3 —_ = = == = = —

102

Table A.3:

M68HC11 Instruction Set (2/7)

M N D - Addressing Instruction Condition Codes
v o Mode Opcode [Operand [Cycles [8 [X [H] 1 [N[Z] C
BGT iral) Branchif =Zaro| ?7Z+(NEV)=0 REL 2E |rr 3 — - - | = = —
BHI (rel) Branch if PC+Z=0 REL 22 |rr 3 — - - | = = —
Higher
BHS (rel) Branch if 7C=0 REL 24 |rr E) — - - -] = = —
Higher or Same
BITA (opr) Eif(s) Test A XL A T 85 |11 H — — — — [& & —
with Memory A DIR 95 |ad 3
A EXT B5 |nh 11 4
A IND X A5 |EfE 4
A IND.Y 18 A5 |£f 5
EITE {opr) Bit(s) Test B BeM E IMM C5 |dii 2 — — — — A A —
with Memory B DIR D5 |ad 3
E EXT F5 |hh 11 4
B IND, X E5 |ff 4
E INDY 18 E5 |ff 5
BELE iral) BranchifAZero| ?7Z+(NEV)=1 REL 2F |rr E] — - — 1= = —_
BLO (ral) Branch if Lower TC= REL 25 |rr a _ - = —| = = —
BLS irel) Branch if Lower TC+Z=1 REL 23 |rr 3 —_ = = == = —
or Same
BLT (ral) Branchif < Zero THEV= REL 20 |rrx 3 e —
BMI {ral) Branch if Minus TN= REL 2B |rx a _ - = | = = —
BEME irel) Branch if not = ?Z=0 REL 26 |rr 3 —- - = - | = = —
Zaro
BPL iral) Branch if Plus TN=0 REL 2A |rr 3 - - - | = = —
BRA (rel) Branch Always 71=1 HEL 20 |[rr 3 — - — — | = - —
BRCLR({opr) Branch if TMemm=10 DIR 13 |dd om 5] e —
(msk) Bitis) Claar IND X 1F |rr 7
(rel) IND.Y 18 1F |ff mm]
rr
£f om
rr
ERM (rel) Eranch Mever T1=0 REL 21 rr 2 —_ = = == = —
BRSET(opr) Branch if Bit(s) TP (Myemm=0 DIR 12 |dd om & —- - = - | = = —
(msk) Sat IND X 1E |rr 7
(ral) IND,Y 18 1E |ff mm]
rr
£f om
rr
BSET (opr) Set Bit(s) M+ mm=M DIR 14 |dd om & - - — — | A A —
(msk) IND X 1C |ff om 7
IND,Y 18 1C |ff mm 8
BSR rel) Branch to See Figure 3-2 REL 80 |rr [— - = == = —
Subrouting
BVC (rel) Branch if V=0 REL 28 [rr 3 - - - -1 == —
Overfiow Claar
BVS (ral) Branch if V=1 REL 28 |rr 3 - - - | = = —
Overflow Set
CBA Compara Ao B A-B INH 11 — 2 — — — —| A A A
CLC Clear Carry Bit 0=C INH ac — 2 - - - —| = = [¥]
cL Clear Interupt 0= INH 0E — 2 —_ = = [i] - — —
Mask
CLR {opr) Clear Mamory =M EXT 7F |hh 11 [:] — - = = 0 i 4]
Byte IND, X 6F |ff &
INDY 18 6F |ff 7
CLRA Clear 0=A A INH 4F — 2 — — — —]0 1 [¥]
Accumulator A
CLRB Clear 0=B E INH 5F — 2 —- - = = ¥} 1 0
Accumulator B
cLv Clear Overflow o=V INH 0A — 2 — - - | = = —
Flag
CMPA {opn) Compare A to A-M A IMM a1 ii 2 —_ = = = A A A
Memory A DIR 91 |ad 3
A EXT B1 |hh 11 4
A IND, X Al |£f 4
A IND.Y 18 Al |ff 5

103

Table A.3: M68HC11 Instruction Set (3/7)

M . o . D i Addressing Instruction Condition Codes
v v Mode Opcode [Operand [Cycles [8 [X [H] 1 N]z[Vv]ec
CMPE (opn) Compare B to BE-M E MM [EEY 2 — — — — | A A A A
Memory E DIR 01 |ad 3
E EXT Fi |hh 11 4
B IND, X E1 |£f 4
E INDY 18 E1 |ff 5
COM (opr) Ones FFF-M=M EXT 73 |hh 11 & — - — —| A A [u]
Complement IND,X 63 |ff -]
Memory Byte IND.,Y 18 63 |[ff 7
COMA Ones FFF-A= A A INH 43 — 2 — - — —| A A [u]
Complement
A
COMB Ones $FF-BE=B B INH 53 — 2 — — — —| A A 0
Complement
B
CPD (opn Compare D to D-M:M +1 IMM 1A 23 |5 kk 5 — — — —| A A A
Memory 16-Bit DIR 1A 93 |ad &
EXT 1A B2 |hh 11 7
IND, X 1A A3 |£f 7
IND,Y cD A3 |ff 7
CPX (opr) Compare X o IX—M:M+1 MM 8C |37 kk 4 —_ = = = A A A
Memory 16-Bit DIR ac |ad 5
EXT BC |hh 11]
IND, X AC | &
INDY L= AC | 7
CPY {opr) Compare Y to IY—M:M+1 IMM 18 8C |37 kk 5 — — — —| A A A
Memary 16-Bit DIR 18 ac |ad]
EXT 18 BC |hh 11 7
IND, X 1A AC |£f 7
IND,Y 18 AC |ff 7
DAA Decimal Adjust | Adjust Sum to BCD INH 19 — 2 —_ = = = A A A
A
DEC {opr) Decrement M-1=M EXT 74 |hkh 11 =] - - — —| A A A
Memeory Byte IND X 6A |£E G
INDY 18 6A |ff 7
DECA Decrement A-1=A A INH 4A — 2 —- — — —| A A A
Accumulator
A
DECE Decrement BE-1=B E INH 5A — 2 —- — — —| A A A
Accumulator
B
DES Decrement SP-1 =8P INH 34 — 3 e
Stack Painter
DEX Decrament 1X-1=1X INH 0g — E] - - - —| = A -
Index Registar
X
DEY Decrement IY -1 =1¥ INH RE] i — 4 - - - —| = A -
Index Registar
Y
ECRA {opri | Exclusive OR A ABM=A A [88 [ii 2 —_ = = = A A [i]
with Mamory A DIR 98 a4 3
A EXT B8 |hh 11 4
A IND X Al |EE 4
A IND.Y 18 A8 |ff 5
ECRE opr) |Exclusive OR B BEM=B B IMM C8 |ii 2 — — — —| A A 0
with Memory B DIR De |ad 3
E EXT F& |hh 11 4
B IND, X ES |ff 4
=] IND,Y 18 ES |ff 5
FDIV Fractional D/X=1Xr=D INH [iE] — 4 — — — — | = A A
Divide 16 by 16
DIV Intager Divide | D/IX=IXr=D INH 0z — 4 — — — —| = & 0
16 by 16
INC (opr) Incremeant M+i=M EXT 7C |hkh 11 -] —_ - = = A A A
Marnory Byta IND X BC |£f =]
INDY 18 6C |£f 7
INCA Increment A+1=A A INH 4C — 2 —- — — —| A A A
Accumulator
A

104

Table A.3: M68HC11 Instruction Set (4/7)

o . o . D L Addressing Instruction Condition Codes
v v Mode Opcode [Operand [Cycles | 8 [X JH] 1 N Z] V]
INCE: Increment E+1=B [5] INH 5C — 2 — — — — | A A A
Accumulator
B
INS Increment 5P +1 = 5P INH EX — El - - - - | = - =
Stack Pointer
INX Incremeant X+1=1X INH 08 — 3 - = — —| = A =
Index Registar
X
INY Incremant ¥ +1=1Y INH 18 08 — 4 - - - —| = A —
Index Registar
Y
JMP {opr) Jump See Figura 3-2 EXT 7E |hh 11 3 - - = == = =
IND, X 6E |[ff 3
IND,Y 18 6E |[ff 4
JSR (opn Jump to Ses Figure 3-2 DIR ap |44 5 _ = = = = = =
Subroutine EXT BD |hh 11 &
IND,X AD |££]
IND,Y 18 ADv |££ 7
LDAA (opr) Load M= A A TN 86 |11 H — — — — & & 0©
Accumulator A DIR 08 [ad 3
A A EXT B6 |hh 11 4
A IND, X AG [fE 4
A IND,Y |18 AS |£f 5
LDAB (opr) Load M=E E MM C6 |1l 2 — — — — & & 0
Accumulator B DIR D& |dd 3
B B EXT F& |hh 11 4
B IND, X E& |ff 4
B IND,Y 18 E6 |ff 5
LOD (opr) Load Doutle | M= AM+1 =B MM CC |37 kk 3 — — — — & & 0
Accumulator DIR DC |ad 4
D EXT FG |hh 11 5
IND, X EC |ff 5
IND,Y 18 EC |ff 5]
LDS (opr) Load Stack M:M+1= 5P IMM 9E |3 kk E) — — — — | A A 0
Poirter DIR 9E (44 4
EXT BE |kh 11 5
IND, X AE |(££ 5
IND,Y 18 AE [ff 5]
LDX {opn) Load Index HIEELS MM CE 3] ®k 3 — — — —[a& & o
Register DIR DE (44 4
X EXT FE |kh 11 5
IND, X EE |[ff 5
IND,Y cD EE |ff 5]
LOY (opn) Load Index MM+ 1=1Y TN iE] CE |17 kk) — — — — & & 0©
Rogistar DIR 18 DE |44 5
Y EXT 18 FE |[hh 11 &
IND, X 14 EE |[ff &
IND,Y 18 EE |ff &
LSL {opr) Logical Shift EXT 78 |rh 11 & - - = = A A A
Left - IND, X 68 |[ff &
TR INDY |18 &8 |ff 7
LSLA Logical Shift A INH 48 — 2 - - - = A A A
Left A D~
C B 1]
LSLB Logical Shift 5] INH 58 — 2 - - - - A A A
LeftB D—-—D:IE:I]—-E.
C B b
LSLD Logical Shift INH 05 — 3 - - - = A A A
Left Double | por om0
C b7 A BB B b0
LSR (opn Leogical Shift EXT 74 |mh 11] - - = =] 0 A A
Right e IND,X 64 |££ 6
O~ - INDY |18 &4 |£f 7
LSRA Logical Shift A INH 44 — 2 - — — — |0 A A
Right A e
0o -0
b W C
LSRE Logical Shift =] INH 54 — 2 - — — — |0 A A
Right B ——
0= 0
[T W C

105

Table A.3:

M68HC11 Instruction Set (5/7)

M R R Descripti Addressing Instruction Condition Codes
nemonic | Operation scription Mode Opcode | Operand [Cycles | § [X [H [1 [N [Z [V]G
LSRD Logical Shift INH 04 — 3 — — — —] 0o A A A
Right Double T o0
LA B BT B B C
MUL Multiply & by 8 A+xB=D INH ap — 10 —_ = = — | = = — A
NEG {opr) Twa's 0-M=M EXT 70 |[kh 11 [— — — —| A A A A
Complement IND, X 60 £f =3
Memory Byte IND,Y 18 60 [ff 7
NEGA Two's O-A=A A INH 40 — 2 — - — —| A A A A
Complement
A
NEGB Two's 0-BE=B =] INH 50 — 2 — - — —| A A A A
Complermert
B
MNOP Mo oparation No Opearation INH 01 — 2 e —_ -
CRAA (opn) CR A+M=A A MM 8A |11 2 — — — — | A A& 0 =
Accumulator A DIR 9A |ad 3
AInclusive) A EXT BA [hh 11 4
A IND X AA(EE 4
A INDY 18 A |EE 5
ORAE (opr) OR B+M=B B IMM CA i1 2 — — — — A A o —
Accumulator E DIR DA |ad 3
B (Inclusive) B EXT FA [kh 11 4
B IND X EA |ff 4
=] INDY 18 EA |ff 5
PSHA PushAontc [A= SthSP=5SP-1 [A INH 36 — 3 _ = = - = = = =
Stack
PSHE PushBonto |B= StkSP=SP-1 B INH a7 — 3 - - - == = = =
Stack
PSHX PushX onto |IX = Stk,SP=3P-2 INH ac — 4 _ = = - = = = =
Stack (Lo
First)
PSHY Push¥ onto |IY = Stk,SP=3SP -2 INH 18 ac — 5 _ = = - = = = =
Stack (Lo
First)
PULA Pull A from SP=5P +1, A= 5tk|A INH a2 — 4 - (= - - = = - =
Stack
PULB Pull B from SP=5P+1,B=5tk|B INH a3 — 4 - (= - - = = - =
Stack
PLILX Pull X From [SP=5P +2, [X = Stk INH EC] — 5 e
Stack (Hi
First)
PULY PulY from [SF=5P +2, 1Y = 5tk INH 18 38 — [- - = -] = = = =
Stack (Hi
First)
ROL (opr) Rotate Left EXT 79 |kh 11 [— — — — | A A A A
e pp— IND X 69 (ff &
‘E‘_FZDIEJ IND,Y 18 60 |ff 7
ROLA Rotate Left A A INH 49 — 2 — — — — | A A A A
N i
ROLE Rotate Left B E INH 58 — 2 — — — —| & A A A
g
ROR (opr) Rotate Right EXT 76 |mh 11 & — — — — A A& A &
IND X 66 |ff]
34 W IND,Y 18 66 |ff 7
RORA Rotate Right A A INH 46 — 2 — - — —| A A A A
[l bl C
RORE Rotate Right B E INH 56 — 2 — — — —| & A A A
'——W‘
7 4
RTI Return from See Figure 3— INH 3B — 12 A 1 A A A A A A
Interrupt
ATS Return from See Figure 3-2 INH 39 — 5 _ = = == = = =
Subrouting
SBA Subtract B from A-BDA INH 10 — 2 — — — —| 4 A A A
A

106

Table A.3: M68HC11 Instruction Set (6 / 7)

o . o . D L Addressing Instruction Condition Codes
v v Mode Opcode [Operand [Cycles | 8 [X JH] 1 N]zZ[V]eE
SBCA {opr) Subtract with A-M-C=A A IMM a2 [4ii 2 — — — — | A A A A
Carry from A A DIR 92 |ad 3
A EXT B2 |hh 11 4
A IND, X A2 (££ 4
A IND,Y 18 A2 [ff 5
SBCE {opr) Subtract with BE-M-C=B B MM C2 [dii 2 - - = = A A A
Carry from B =] DIR D2 (a4 3
B EXT F2 |kh 11 4
B IND, X E2 |ff 4
B IND,Y 18 E2 |ff 5
SEC Set Cary i=C INH oD — 2 - - — | = = =
SEl Sat Irtarmpt 1= INH 0F — 2 - - — 1 - - -
Mask
SEV Set Overflow 1=V INH 0B — 2 - - - - | = = 1
Flag
STAA (opr) Stora A=M A DIR 97 [ad E] —_- = = = A A [i]
Accumulator A EXT B7 |hh 11 4
A A IND, X AT |£f 4
A IND,Y 18 AT |ff 5
STAB (opr) Store E=-M [5] DIR D7 ([ad 3 - = = =] A A 0
Accumulator E EXT F7 |hh 11 4
B B IND, X E7 |ff 4
E IND,Y 14 E7 |ff 5
STD (opr) Store A=MB=M+1 DIR DD |ad F] — — — — & & 0
Accumulator EXT FO |hh 11 5
8] IND X EDy |£f 5
IND,Y 18 ED» |££ 5]
STOP Stop Internal — INH CF — 2 - = - - = = =
Clocks
STS (opr) Store Stack SP=M:M+1 DIR 9F (a4 4 —_- = = = A A [i]
Poirter EXT BF |hh 11 5
IND, X AF |£f 5
IND,Y 18 AF |£f 5]
ETX (opr) Store | ndex IX=M:M+A DIR DF (44 4 — — — — | A A 0
Register X EXT FF [kh 11 5
IND, X EF |ff 5
IND,Y cD EF |ff &
STY (opr) Store Index F=M:M+1 DIR 18 DF |44 5 - - - = A A 0
Register ¥ EXT 18 FF [kh 11 -]
IND, X 14 EF |ff &
IND,Y 18 EF [ff 5]
SUBA {opr) Subtract A-M= A A MM 80 |dii 2 - - = = A A A
Memony from A DIR Q0 (ad 3
A A EXT B0 |kh 11 4
A IND, X AQ |EE 4
A IND,Y 18 AD|ff 5
SUEB (opr) Subtract E-M=BE A MM CO0 o [idi 2 —_- = = = A A A
Memaory from A DIR DO |ad a
B A EXT FO |mkh 11 4
A IND, X EQ |ff 4
A IND,Y 18 ED |£f 5
SUED (opr) Subtract D-M:M+1=D MM 83 |17 kk F] — — — — & & &
Memony from DIR 93 (a4 5
D EXT B3 |hh 11 &
IND, X AL (fE &
IND.Y 18 AL (fE 7
SWI Software See Figure 3-2 INH aF [— 14 RN — i RN —
Interrupt
TAB Transfer Ato B AZB INH 16 — 2 — — — — | A A 0
TAP Transfer A to A=CCR INH 06 — 2 A 1 A A A A A
CC Register
TBA Transfer Bto A E=A INH 17 — 2 — — — — | A A i
TEST TEST (Only in | Address Bus Counts INH 0o — : e
Test Modes)
TPA Transter GG CCR—=A INH 07 — 2 — — — — = = =
Register to A
TST {opn | Testfor Zomor M-0 EXT 70 [mh 11 [— — — — | A A 0
Minus IND, X 60 |[ff &
IND,Y 18 60 [ff 7

107

Table A.3: M68HC11 Instruction Set (7 / 7)

N N L Addressing Instruction Conditien Codes
Mnemonic Op eration Description Moda Opcode Operand | Cycles | S | X | H | 1 [| z | v [+
TSTA Test Afor Zero A-D A INH 4D — 2 - — — —| A A [i] [1]
or Minus
TSTE Test B for Zero BE-0 B INH 5D — 2 - - — —| A A
or Minus
TeX Transfer Stack EP+1IX INH 30 — 3 - - - -] = =
Pointer to X
TSY Transfer Stack SP+1=1Y INH 18 30 — 4 - - - - = =
Pointer to ¥’
TXS Transfer X to 1X—1=5P INH 35 — 3 - — — -] = =
Stack Painter
TYS Transfer Y to IY—1=5P INH 18 35 — 4 - - - - = =
Stack Painter
Wal Wiait for Stack Regs & WAIT INH 3E — - - - - | = =
Interupt
KGDX Exchange D IX=D,D=IX INH aF — 3 - - - - = =
with X
XGDY Exchange D Y=DD=IY INH RE] aF — 4 - — — -] = =
with

108

B.1

OKO1:

OKo02:

OKO03:

APPENDIX B

MICROCONTROLLER TEST CODE

Instructions and Addressing Modes Test Program

ORG
LDAA
LDAB
STAB
ADDA
LDAB
STAB
SUBA
BEQ
LDAA
JMP

LDAA
ADDA
SUBA
BEQ
LDAA
JMP

LDAA
LDAB
STAB
ADDA
LDAB
STAB
SUBA
BEQ

LDAA
JMP

LDAA
LDAB
STAB

$D000

#$20 ;***ARITHMETIC OPERATIONS***
#$30

$0001

$0001 ;DIRECT ADDITION
#3$50

$0002

$0002 ;DIRECT SUBTRACTION
OKoO1

#301

FAILED

#350

#$40 ;IMMEDIATE ADDITION
#$90 ;IMMEDIATE SUBTRACTION
OKo02

#$02

FAILED

#3$90

#$10

$0100

$0100 ;EXTENDED ADDITION
#$A0

$0101

$0101 ;EXTENDED SUBTRACTION
OKO03

#303

FAILED

#$A0

#305
$0102

109

OKo04:

OKO5:

OKOo6:

OKO07:

OKao8:

OKO09:

OKOA:

LDX
ADDA
LDAB
STAB
SUBA
BEQ
LDAA
JMP

LDAA
INCA
CMPA
BEQ
LDAA
JMP

DECA
CMPA
BEQ
LDAA
JMP

INC
LDAB
CMPB
BEQ
LDAA
JMP

DEC
LDAB
CMPB
BEQ
LDAA
JMP

INC
LDAB
CMPB
BEQ
LDAA
JMP

DEC
LDAB
CMPB
BEQ
LDAA
JMP

LDAA

#$0100

$02,X ;INDEXED ADDITION
#$A5

$0103

$03,X ;INDEXED SUBTRACTION
OKo04

#$04

FAILED

#$A5
;INHERENT INCREMENT
#$A6
OKO05
#305
FAILED

;INHERENT DECREMENT
#$A5
OKO06
#306
FAILED

$0101 ;EXTENDED INCREMENT
#3A1

$0101

OKo7

#307

FAILED

$0101 ;EXTENDED DECREMENT
#$A0

$0101

OKO08

#308

FAILED

$02,X ;INDEXED INCREMENT
#306

$0102

OKO09

#309

FAILED

$02,X ;INDEXED DECREMENT
#305

$0102

OKOA

#$0A

FAILED

#$23 ;**MULTIPLICATION & DIVISION***

110

LDAB #$17
MUL iMULTIPLICATION
SUBD #$0325
BEQ OKO0B
LDAA #$0B
JMP FAILED
OKOB:
LDD #$0325
LDX #$0013
IDIV ;DIVISION
SUBD #$0007 ;CHECK REMAINDER
BEQ OKOC
LDAA #$0C
JMP FAILED
OKOC:
XGDX
SUBD #$002A ;CHECK QUOTIENT
BEQ OKOD
LDAA #$0D
JMP FAILED
OKOD:
LDAA #$25 ***LOGICAL OPERATIONS***
ANDA #$F0 ;IMMEDIATE AND
LDAB #$20
SBA
BEQ OKOE
LDAA #$0E
JMP FAILED
OKOE:
ORAA #%$97 ;IMMEDIATE OR
LDAB #$0F
STAB $0004
ANDA $0004 ;DIRECT AND
CMPA #$07
BEQ OKOF
LDAA #$0F
JMP FAILED
OKOF:
LDAB #$A0
STAB $0005
ORAA $0005 :DIRECT OR
ASLA (INHERENT ARITHMETIC SHIFT LEFT
CMPA #$4E
BEQ OK10
LDAA #$10
JMP FAILED
OK10:
SEC
RORA JINHERENT ROTATE RIGHT
CMPA #$A7
BEQ OK11

111

LDAA #$11
JMP FAILED

OK11:
SEC
LDAA #$25
STAA $0105
ROL $0105 ;EXTENDED ROTATE LEFT
LDAB #$4B
CMPB $0105
BEQ OKi12
LDAA #$12
JMP FAILED
OK12:
LDX #$0100
NEG $05X ;INDEXED NEGATE
LDAA #$B5
CMPA $05,X
BEQ OK13
LDAA #$13
JMP FAILED
OK13:
ASR $0105 ;EXTENDED ARITHMETIC SHIFT RIGHT
LDAA $05,X
CMPA #$DA
BEQ OK14
LDAA #$14
JMP FAILED
OK14:
LSR $05,X ;INDEXED LOGICAL SHIFT RIGHT
LDAA #$6D
CMPA $0105
BEQ OK15
LDAA #$15
JMP FAILED
OK15:
COMA INHERENT COMPLEMENT
CMPA #$92
BEQ OKI16
LDAA #$16
JMP FAILED
OK16:
COM $0105 ;EXTENDED COMPLEMENT
LDAB #$92
CMPB $05,X
BEQ OK17
LDAA #$17
JMP FAILED
OK17:
EORA #$F0 ;IMMEDIATE EXCLUSIVE OR
CMPA #$62

112

OK18:

OK19:

OK1A:

OK1B:

OK1C:

OK1D:

OK1E:

BEQ
LDAA
JMP

CLR
CLRA
CMPA
BEQ
LDAA
JMP

BSET
LDAA
CMPA
BEQ
LDAA
JMP

BCLR
LDAA
CMPA
BEQ
LDAA
JMP

LDAA
LDAB
PSHA
PSHB
CLRA
CLRB
PULB
PULA
CMPA
BEQ
LDAA
JMP

CMPB
BEQ
LDAA
JMP

LDAB
STAB

OK18
#$18
FAILED

$05,X ;INDEXED CLEAR
;INHERENT CLEAR

$0105
OK19
#$19
FAILED

$05,X #$AA
#SAA
$0105
OK1A
#$1A
FAILED

$05,X #$0F
#$A0

$05,X
OK1B
#$1B
FAILED

#345
#3CD

#345
OK1C
#$1C
FAILED

#$CD
OK1D
#$1D
FAILED

#$15
$0010

;INDEXED SET BITS

;INDEXED CLEAR BITS

;PUSH

;PULL

BRCLR $0010 #$EA OK1E ;BRANCH IF BITS CLEAR

LDAA
JMP

#$1E
FAILED

BRSET $0010 #$05 OK1F ;BRANCH IF BITS SET

LDAA

#$1F

113

OK1F:

FAILED:

JMP

LDAA
LDAB
STOP

LDAB
STOP

FAILED

#3500
#300

#$EE

114

B.2

LDAA
LDAB
STAB
ADDA
LDAB
STAB
SUBA
BEQ

LDAA
ADDA
SUBA
BEQ

LDAA
LDAB
STAB
ADDA
LDAB
STAB
SUBA
BEQ

LDAA
LDAB
STAB
LDX

ADDA
LDAB
STAB
SUBA
BEQ

LDAA
INCA
CMPA
BEQ

DECA
CMPA
BEQ

INC

LDAB
CMPB
BEQ

DEC

LDAB
CMPB
BEQ

INC

LDAB
CMPB
BEQ

Execution of Test Program on Original MC68HC11

#$20
#3530
$01
$01
#3550
$02
$02
$8015
#3550
#$40
#3590
$8022
#3590
#3510
$0100
$0100
#SA0
$0101
$0101
$803B
#SA0
#3505
$0102
#$0100
$02,X
#SA5
$0103
$03,X
$8055
#SA5

#SA6
$8061

#SA5
$806B
$0101
#SA1
$0101
$807A
$0101
#SA0
$0101
$8089
$02,X
#3506
$0102
$8097

P-8002
P-8004
P-8006
P-8008
P-800A
P-800C
P-800E
P-8015
P-8017
P-8019
P-801B
P-8022
P-8024
P-8026
P-8029
P-802C
P-802E
P-8031
P-8034
P-803B
P-803D
P-803F
P-8042
P-8045
P-8047
P-8049
P-804C
P-804E
P-8055
P-8057
P-8058
P-805A
P-8061
P-8062
P-8064
P-806B
P-806E
P-8070
P-8073
P-807A
P-807D
P-807F
P-8082
P-8089
P-808B
P-808D
P-8090
P-8097

Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF

115

X-FFFF
X-FFFF
X-FFFF
X-FFFF
X-FFFF
X-FFFF
X-FFFF
X-FFFF
X-FFFF
X-FFFF
X-FFFF
X-FFFF
X-FFFF
X-FFFF
X-FFFF
X-FFFF
X-FFFF
X-FFFF
X-FFFF
X-FFFF
X-FFFF
X-FFFF
X-FFFF
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100

A-20
A-20
A-20
A-50
A-50
A-50
A-00
A-00
A-50
A-90
A-00
A-00
A-90
A-90
A-90
A-A0
A-AQ
A-AQ
A-00
A-00
A-AQ
A-AQ
A-AQ
A-A0
A-A5
A-A5
A-AS5
A-00
A-00
A-AS5
A-A6
A-Ab
A-Ab
A-AS5
A-AS5
A-AS5
A-AS5
A-AS5
A-A5
A-AS5
A-AS5
A-A5
A-AS5
A-A5
A-A5
A-AS5
A-A5
A-A5

B-FF
B-30
B-30
B-30
B-50
B-50
B-50
B-50
B-50
B-50
B-50
B-50
B-50
B-10
B-10
B-10
B-A0
B-A0
B-A0
B-A0
B-A0
B-05
B-05
B-05
B-05
B-A5
B-A5
B-A5
B-A5
B-A5
B-A5
B-A5
B-A5
B-A5
B-A5
B-A5
B-A5
B-Al
B-Al
B-Al
B-Al
B-A0
B-A0
B-A0
B-A0
B-06
B-06
B-06

C-90
C-90
C-90
C-90
C-90
C-90
C-94
C-94
C-90
C-9A
C-94
C-94
Cc-98
C-90
C-90
Cc-98
Cc-98
Cc-98
C-94
C-94
Cc-98
C-90
C-90
C-90
Cc-98
Cc-98
Cc-98
C-94
C-94
Cc-98
Cc-98
C-94
C-94
Cc-98
C-94
C-94
Cc-98
Cc-98
C-94
C-94
Cc-98
Cc-98
C-94
C-94
C-90
C-90
C-94
C-94

S5-0041
S5-0041
5-0041
5-0041
5-0041
5-0041
5-0041
5-0041
5-0041
5-0041
5-0041
S5-0041
5-0041
S5-0041
S5-0041
5-0041
S-0041
S-0041
S5-0041
S-0041
S-0041
S-0041
S-0041
S5-0041
S5-0041
S5-0041
5-0041
S-0041
5-0041
5-0041
S-0041
5-0041
5-0041
5-0041
5-0041
5-0041
5-0041
5-0041
S-0041
5-0041
5-0041
S5-0041
5-0041
S5-0041
S5-0041
5-0041
S-0041
S5-0041

DEC
LDAB
CMPB
BEQ
LDAA
LDAB
MUL
SUBD
BEQ
LDD
LDX
IDIV
SUBD
BEQ
XGDX
SUBD
BEQ
LDAA
ANDA
LDAB
SBA
BEQ
ORAA
LDAB
STAB
ANDA
CMPA
BEQ
LDAB
STAB
ORAA
ASLA
CMPA
BEQ
SEC
RORA
CMPA
BEQ
SEC
LDAA
STAA
ROL
LDAB
CMPB
BEQ
LDX
NEG
LDAA
CMPA
BEQ
ASR
LDAA

$02,X
#3505
$0102
$S80A5
#$23
#517

#50325

$80B4
#50325
#50013

#50007
$80C5

#$002A
$80D0
#$25
#SFO
#3520

$80DE
#597
#S0F
$04
$04
#507

S80EF
#SA0
$05
$05

#S4E
S$S80FF

#SA7
$810A

#$25
$0105
$0105
#54B
$0105
$811F
#50100
$05,X
#S$B5
$05,X
$812F
$0105
$05,X

P-8099
P-809B
P-809E
P-80A5
P-80A7
P-80A9
P-80AA
P-80AD
P-80B4
P-80B7
P-80BA
P-80BB
P-80BE
P-80C5
P-80C6
P-80C9
P-80DO
P-80D2
P-80D4
P-80D6
P-80D7
P-80DE
P-80EO
P-80E2
P-80E4
P-80E6
P-80E8
P-80EF
P-80F1
P-80F3
P-80F5
P-80F6
P-80F8
P-80FF
P-8100
P-8101
P-8103
P-810A
P-810B
P-810D
P-8110
P-8113
P-8115
P-8118
P-811F
P-8122
P-8124
P-8126
P-8128
P-812F
P-8132
P-8134

Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF

116

X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0013
X-002A
X-002A
X-002A
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0000
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100

A-A5
A-A5
A-A5
A-A5
A-23
A-23
A-03
A-00
A-00
A-03
A-03
A-00
A-00
A-00
A-00
A-00
A-00
A-25
A-20
A-20
A-00
A-00
A-97
A-97
A-97
A-07
A-07
A-07
A-07
A-07
A-AT7
A-4E
A-4E
A-4E
A-4E
A-AT
A-AT7
A-AT
A-AT
A-25
A-25
A-25
A-25
A-25
A-25
A-25
A-25
A-B5
A-B5
A-B5
A-B5
A-DA

B-06
B-05
B-05
B-05
B-05
B-17
B-25
B-00
B-00
B-25
B-25
B-07
B-00
B-00
B-2A
B-00
B-00
B-00
B-00
B-20
B-20
B-20
B-20
B-0F
B-0F
B-0F
B-0F
B-0F
B-A0
B-A0
B-A0
B-A0
B-A0
B-A0
B-A0
B-A0
B-A0
B-A0
B-A0
B-A0
B-A0
B-A0
B-4B
B-4B
B-4B
B-4B
B-4B
B-4B
B-4B
B-4B
B-4B
B-4B

C-90
C-90
C-94
C-94
C-90
C-90
C-90
C-94
C-94
C-90
C-90
C-90
C-94
C-94
C-94
C-94
C-94
C-90
C-90
C-90
C-94
C-94
Cc-98
C-90
C-90
C-90
C-94
C-94
Cc-98
Cc-98
Cc-98
C-93
C-94
C-94
C-95
C-9A
C-94
C-94
C-95
Cc-91
Cc-91
C-90
C-90
C-94
C-94
C-90
C-99
C-99
C-94
C-94
C-99
C-99

S5-0041
5-0041
S5-0041
5-0041
S5-0041
S5-0041
S5-0041
S5-0041
S5-0041
5-0041
S-0041
S5-0041
5-0041
S5-0041
5-0041
5-0041
S-0041
5-0041
5-0041
5-0041
5-0041
S-0041
5-0041
5-0041
S-0041
5-0041
5-0041
S-0041
5-0041
S-0041
5-0041
5-0041
S5-0041
5-0041
S-0041
S-0041
5-0041
S5-0041
S5-0041
S5-0041
S5-0041
S-0041
S5-0041
S-0041
5-0041
S5-0041
S5-0041
5-0041
S-0041
5-0041
5-0041
S-0041

CMPA
BEQ

LSR

LDAA
CMPA
BEQ

COMA
CMPA
BEQ

COM

LDAB
CMPB
BEQ

EORA
CMPA
BEQ

CLR

CLRA
CMPA
BEQ

BSET
LDAA
CMPA
BEQ

BCLR
LDAA
CMPA
BEQ

LDAA
LDAB
PSHA
PSHB
CLRA
CLRB
PULB
PULA
CMPA
BEQ

CMPB
BEQ

LDAB
STAB
BRCL
BRSE
LDAA
LDAB
STOP

#SDA
$813D
$05,X
#56D
$0105
$814B

#592
$8155
$0105
#$92
$05,X
$8163
#SFO
#5562
$816E
$05,X

$0105
$817B
$05,X SAA
#SAA
$0105
$818A
$05,X SOF
#SA0
$05,X
$8198
#$45

#SCD

#$45

$S81AB

#SCD

$81B4

#3515

$10

$10 SEA $81C1
$10 $05 $81ca
#3500

#3500

P-8136
P-813D
P-813F
P-8141
P-8144
P-814B
P-814cC
P-814FE
P-8155
P-8158
P-815A
P-815C
P-8163
P-8165
P-8167
P-816E
P-8170
P-8171
P-8174
P-817B
P-817E
P-8180
P-8183
P-818A
P-818D
P-818F
P-8191
P-8198
P-819A
P-819C
P-819D
P-819E
P-819F
P-81A0
P-81A1
P-81A2
P-81A4
P-81AB
P-81AD
P-81B4
P-81B6
P-81B8
P-81C1
P-81CA
P-81CC
P-81CE
P-81CF

Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF
Y-FFFF

117

X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100
X-0100

A-DA
A-DA
A-DA
A-6D
A-6D
A-6D
A-92
A-92
A-92
A-92
A-92
A-92
A-92
A-62
A-62
A-62
A-62
A-00
A-00
A-00
A-00
A-AA
A-AA
A-AA
A-AA
A-AQ
A-AQ
A-AQ
A-45
A-45
A-45
A-45
A-00
A-00
A-00
A-45
A-45
A-45
A-45
A-45
A-45
A-45
A-45
A-45
A-00
A-00
A-00

B-4B
B-4B
B-4B
B-4B
B-4B
B-4B
B-4B
B-4B
B-4B
B-4B
B-92
B-92
B-92
B-92
B-92
B-92
B-92
B-92
B-92
B-92
B-92
B-92
B-92
B-92
B-92
B-92
B-92
B-92
B-92
B-CD
B-CD
B-CD
B-CD
B-00
B-CD
B-CD
B-CD
B-CD
B-CD
B-CD
B-15
B-15
B-15
B-15
B-15
B-00
B-00

C-94
C-94
C-90
C-90
C-94
C-94
C-99
C-94
C-94
C-99
C-99
C-94
C-94
C-90
C-94
C-94
C-94
C-94
C-94
C-94
Cc-98
Cc-98
C-94
C-94
Cc-98
Cc-98
C-94
C-94
C-90
Cc-98
Cc-98
Cc-98
C-94
C-94
C-94
C-94
C-94
C-94
C-94
C-94
C-90
C-90
C-90
C-90
C-94
C-94
C-94

S5-0041
5-0041
S5-0041
5-0041
S5-0041
S5-0041
S5-0041
S5-0041
S5-0041
5-0041
S-0041
S5-0041
5-0041
S5-0041
5-0041
5-0041
S-0041
5-0041
5-0041
5-0041
5-0041
S-0041
5-0041
5-0041
S-0041
5-0041
5-0041
S-0041
5-0041
S-0041
S-0040
S-003F
S-003F
S-003F
5-0040
S-0041
5-0041
S5-0041
S5-0041
S5-0041
S5-0041
S-0041
S5-0041
S-0041
5-0041
S5-0041
S5-0041

RAM Locations after program run:

0000
0010
0020
0030
0040

0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
01A0
01BO
01CO
01D0
01EO0
01F0

FF
15
FF
10
81

10
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

30
FF
FF
EE
D5

A0
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

50
FF
FF
50
FF

05
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
01
E4

A5
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

OF
FF
FF
00
E4

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

A0
FF
FF
FF
6D

A0
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FFE
FFE
FF
FFE
E3

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
E3
D4

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
74
00

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
DO
E4

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

118

FF
FF
FF
06
6D

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
A5
E3

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
01
E4

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
00
E4

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FFE
FFE
FF
FFE
6D

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

FF
FF
FF
FF
E3

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

B.2. Serial Port Test Program

BASE EQU $1000

SCSR EQU $102E ; SERIAL COMMS STATUS REG
SCDR EQU $102F ; SERIAL COMMS DATA REG
SCCR2 EQU $102D

BAUD EQU $102B

DDRD EQU $1009

ORG $D000
LDAA #$FE
LDAA #$02
STAA DDRD
LDAA #$00
STAA BAUD
LDAA #3$0C
STAA SCCR2
LDX #BASE ; POINTER TO REGISTER BASE
LOOP: LDAA #3$21 ; START WITH ASCII 0X21 TO TRANSMIT
XMIT: STAA SCDR ; TRANSMIT REG A
HERE: BRCLR $2E,X #$40 HERE ; LOOP HERE UNTIL BYTE TRANSMITTED
INCA ; INC CHAR TO BE TRANSMITTED
CMPA #$5B ; SEE IF IT'S BEYOND ASCII 0X5A
BNE XMIT ; NO, SEND THE NEXT ONE
BRA LOOP ; RESET CHAR TO 0X21

119

APPENDIX C

VISUAL SIMULATION TOOL USER GUIDE

™ GBHCT Sysiem(dmelated Erkan T JMCAL| - METLH

e J Fstran Iraauchon e e fncon = T Sian T TR
. 'Hou Hes D |H-aa o Dt - k] padde Faich EQ00 [PCHPCL) 10 er| [}
K =313 1Mz] H1a 1M e oo Bt Eescustion EMC [PCHPCL] ar M=]
=l H{f) A S
e P WF X e dFF =5
Cancibor Codes - Alter I e mms |
Inthasction DoEW @Em JERC
i : A)
50 R HE T Bk N [. o
N 2 ¥ CF R ™ 8 |
Tesl Erviivament Enscubofl 5 epusce Geeial Furcifin Flegnss
1 Gelect HEX File | IS ; Dosnfad HENbS HOM Cpcle formbar)| Py Opeods| Addk| Opl | Op2 Cpd| & | |Fagde | ks Ceced &
e — S Te————t 1 | FORTA [
= = - 5 I i MM 0B | P]
] EEPROM] i L MW W 18 - | PORTC]
| 1 2 [P | FORTE 1]
3 | 5 [1 rH | FORTEL o
b k] [[} [T | DL [1]
W 0 DECE R | PORTD]
] 0 DECH MM . lo]
EEEEEEIET TN FORTE G0 W
1w A 0 moh M- - |ooRe m]
3 2 0 MOF R oW m]
211 0 ROLA MH . locin ™ o
na 7} T r |TENTMy M)]
23 0 AL BH - |Tre &2 ®
m 0 STk DA M@ TCIH ™]
] 0 STaB DR o ks ™]
M 0 sk DB m T m]
24 0 LDAF DA m TCe ™]
245 0 ADCA DR M = T o
o 0 apCh DM om [Tel W 0
E 0 EDAR DA ™ |rocws =
Lo Ireeeza FT) 1 BT W W TOCILa) FF =5
] 0 AL BT W 00 TOCHN) P 5
- F 0 RR BT mom 10CaLal R =4
snligursbon ;ﬁ g gt:?_g Eﬂg ﬁ % HE]T; ; g
OC3La)
TEST BENCH % 0 BET WO MW TaCA] ¥ &
3 0 ML BT mom |TocaLy F rd
: (= = 0 BRET DA 0 M E7 |TocsH) R 25
3. ¥ TustBenchlosfig Complsed w D00 |is = Run 8 A @ AR B a2 - -THE{'“ F o5

(48

Figure C.1: Main Window of Visual Simulation Software

120

For proper operation of simulation tool, steps mentioned below should be followed

for making simulations.

1.

Simulation program can be run by executing sc68hc11.exe file. For executing
sc68hc11.exe, .NET framework should have been installed on the system.
When simulation program is executed, main window that is shown in Figure
C.1 is loaded.

Program code can be written in M68HC11 assembly using code editor tool
(can be accessed using “Code Editor” button which is in group box labeled as

“A” Figure C.1.) or any other text editor. Implemented microcontroller has its
ROM located between address locations $D000 - $FFFF. Directives in
program source code should be given appropriately. An example is shown in
Figure C.2 with file name “TESTALL.asm”.

L™ TESTALL.ASM - 6BHC11 Simulator Code Editor
File: W=l

Tt Chrln ORG $DOOO ~
Open... CHHO [| pas #$20 *™ARITHMETIC OPERATIONSH
Chrl+3 LOAE #3$30

STAB $0001

ADDA $0001 ;DIRECT ADDITION

LDAB #3$50

STAB $0002

SUBA $0002 DIRECT SUBTRACTION

BEQ QK01

LDAA #5017

JMP FAILED

Figure C.2: Code Ediitor Example

121

3. Assembly source file should be saved in the simulator program directory.

4. Saved assembly source file should be converted to .hex format using machine
code generator tool which is located in group box A that is shown in Figure
C.1. At first, assembly file should be selected, then it should be compiled into
.s19 file using “.asm -> .s19” button. This file can be used for downloading the
program into EVBU boards (memory related directives should be compatible
with target EVBU board). For simulation, .s19 file should be converted to .hex

file using “.s19 -> .hex” button.

Eg Machine Code Generator

Step 1 SE'EELﬂfCS:mh'P [\Be._DWi tsWwi. 1wl \bin\Debugh TES TALL ASM
Hint

Step2 am = 513 | OK Hex file is created. Now you
can close this window and run
simulation.

Step 3 219 =» _hex oK

Info

A " _hex" file contains program codes in 68HC11 machine
language.

Figure C.3: Code Generator Example

5. After converting source file to .hex format, this program file should be
downloaded into microcontrollers ROM using “Select HEX File” and

122

“Download HEX to ROM” buttons that are labeled as “1” and “2” in Figure C.4.
Selected .hex file should be in simulator directory.

— Tezt Enviranment

1. Select HEX File | TESTALLHEX] Download HEX to ROM |

Serial konitor

- 7 SEGMENT
. DECODER DRIVER
e Control Unit .

Interrupt Control

PORT C |

Logic Indicator

TestBench Configuration

TEST BENCH

2 ¥ TestBench Config. Completed 4 I 1EIDEI|us LI Run |

Figure C.4: Test Environment Example

After downloading program file into ROM, user should prepare test
environment for simulation requirements. Behaviour of test bench devices can
be changed by clicking on symbols of the devices. Configuration windows of

123

binary switch, pulse generator and serial monitor are shown in Figures C.6,
C.7 and C.8 respectively. Test bench devices can be enabled / disabled and
their connections to microcontroller ports can be changed using “Test Bench
Configuration” button that is shown in Figure C.4. An example test bench port

configuration window can be found in Figure C.5.

Test Bench Configuration

End Canfiguration

7 Seament Displays

Save Configuration

Left Display Right Display

¥ Enabled 2 Connected to: ¥ Enabled 7 Connected to:
F [rc7 - Flrer -

A [rcs - A [pCy -

&, o | s -
B0 < 0+ —
_‘ a c [rc3 - _a g c [rcs -
@F |rc2 - @F oo -

D |pc1 ~ D |pc7 -

E |rco ~ E |rce -

" Com Anode * Com Cathods ¢ Com Anode Com Cathode

Binary Switches
¥ Enabled 7

[Poz ~|lPo2 ~[[Poi

~llpoo ~llPe3s ~llrEz ~lfPer ~llFED -]

7 Segment Decoder Driver

[Enabled 7

7 SEGMENT DECODER-DRIVER

l

Al

I

B1

I

<

I

D1

A

B2 c2

I 1 1

D

Logic Indicator

1
[rc7 =l[rce ~l[pcs -f[Pce

~l[rca =lfrcz ~llPCi j|Pc02j

[Enabled®

LOGIC INDICATOR

Il

7 L3

]

5

!

5

1]

2 1 o

lpe7 rljpes ~llPes ~|lPe4 ~llPE3 ~lfPez xllPe1 ~l[re0 -]

TTL Dscillators
W Enabled ?

100kHz IFET =
10kHz |FEE =
1kHa [FES =
100Hz IFE4 =

Push Button Pulse

¥ Enabled ?

O——

PULSE

A

_oq/_m

Figure C.5:

124

Test Bench Port Configuration Example

— Test Environment

PR 8 g Bii Binary Switch M=

—Switch Conditions

2 R I ™2 W I AR I
Walue [Hex.] : 020

a: | 120 fus =l Add
Time [uz] | Walue [Hes) | Save |
1 0o
20 36 Remove |
100 12
120 |
200 T Clear

‘ E nd Configuration

TEST BEN

Figure C.6: 8-bit Binary Switch Configuration

— Puzh Button State

Pressed .

| 100 Jus =] Add

Tirme [uz] | State |

Save

110 Pressed
120 Fielzazed
150 Pressed Remove
170 Fielzazed

Clear

Wi

End Configuration

TEST BENCH

Figure C.7: Push Button Pulse Generator Configuration

125

[Serial Monitor

Summary

Serial Data Information

Direction | Time [ug] | Length | Data
Sernial Monitor Test Data
Tx 300 54

Configuration

This data will be sent fro...

Hexradecimal

£F BE 63 74

Remove At |
End
Configuration Save
Clear

This data will be sent from serial monitor to MCESHC11

300 s =]

Add

Figure C.8:

7. When test bench configuration is completed, “Test Bench Config. Completed”

Serial Monitor Configuration

checkbox should be checked (Figure C.4).

8. For running simulation, simulation duration should be selected and “Run”
button should be clicked (Figure C.9). User should click on “OK” button on the
window that will be opened for informing about simulation duration. This
simulator is not a traditional micorocontroller simulator but a simulator that
runs SystemC implementation of microcontroller and presents internal
workings of microcontroller, so simulations with long durations may last very
long. This situation should be considered when simulation duration is being
selected. Simulation execution speed is about 350 instructions / second on a
computer with 1.5 GHz CPU.

Do you want to perform simulation? |Z|

Oscillator

TestBench Configuration

TEST BENCH

b ¥ TestBench Config. Completeg

Figure C.9:

Simulation Time = 10000 us
Run simulation ?

2
_‘\/

Ewet | Haryir |
ol 4\
10 | ms v ‘

Running Simulation

126

9.

10.

11.

After running simulation, program brings simulation results. User can get
information on executed instruction using listviews “Execution Sequence” and
“Instruction Cycles” that are labeled as “E” and “F” respectively in Figure C.1.
Information on internal registers are also shown on main window regions that
are labeled as “B”, “C” and “G”.

For viewing RAM or EEPROM locations at a time, a line with desired timing
information should be selected from listviews “E” or “F” and “RAM” or
“EEPROM” buttons that are shown in Figure C.4. should be clicked.

Information on test bench modules can be obtained by clicking on module
symbols at any time. As an example, simulation information of “serial monitor”
module can be accessed using “Read Simulation Results” button that is
shown in Figure C.10.

[Serial Monitor

Serial Data Information
Read Simulation Results | Hexadecimal Ascil

Summary

Direction | Time [us] | Length Data
Tw 10 54 Serial Monitor Test Skin...
"B o /0123455

01 234567 ..

Configuration

Start Fhil;‘]jﬂate 4 o | ‘ J
Configuralion ’—_|

Figure C.10: Simulation Results of Serial Monitor Module

127

