
A

Automatic Parallelization of Multi-rate Simulink Control Models for
Multi-core Architectures

CUMHUR ERKAN TUNCALI, Arizona State University
GEORGIOS FAINEKOS, Arizona State University
YANN-HANG LEE, Arizona State University

This paper addresses the problem of parallelizing model block diagrams for real-time embedded applica-
tions on multi-core architectures. Our approach is based on assigning each CPU core, a set of blocks to
execute. The challenge is in finding an optimal or feasible mapping so that a synchronized execution of the
blocks on different cores can be achieved with respect to the constraints induced by the control model and
the target platform architecture. In order to solve the problem, we describe a Mixed Integer Linear Program-
ming (MILP) formulation for finding a feasible mapping of the blocks to different CPU cores. For single-rate
models, we use an objective function that minimizes the overall worst-case execution time on the target plat-
form. For the multi-rate models, we solve the feasibility problem for finding a mapping which satisfies given
block sampling period constraints. When the model size increases, solving these problems in a reasonable
time becomes harder. For addressing this issue, we introduce a set of heuristics for reducing the number
of constraints in the MILP formulation. For single-rate models, these heuristics help the MILP solver to
find solutions that are closer to the optimal solution given a limited solver execution time. We study the
scalability and efficiency of our approach with synthetic benchmarks of randomly generated directed acyclic
graphs. We demonstrate applicability of our approach to practical problems using a Diesel engine controller
from Toyota as a case study.

CCS Concepts: �Computer systems organization → Embedded software;

Additional Key Words and Phrases: Multiprocessing, embedded systems, optimization, model based devel-
opment, Simulink, multi-rate, task allocation

ACM Reference Format:
Cumhur Erkan Tuncali, Georgios Fainekos, and Yann-Hang Lee, 2015. Automatic Parallelization of Multi-
rate Simulink Models for Multi-core Architectures. ACM Trans. Embedd. Comput. Syst. V, N, Article A
(January YYYY), 25 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Model Based Design (MBD) has gained a lot of traction in the industries that develop
safety critical systems. This is particularly true for industries that develop Cyber-
Physical Systems (CPS) where the software implements control algorithms for the
physical system. Using MBD, system developers and control engineers can design con-
trol algorithms on high-fidelity models. Most importantly, they can test and verify the
system properties before having a prototype of the system. The autocode generation
facility of MBD tools provides additional concrete benefit which helps in eliminating
programming errors.

This research was partly funded by the NSF awards CNS-1446730 and IIP-1361926, and the NSF I/UCRC
Center for Embedded Systems.
Authors’ addresses: Arizona State University, Centerpoint Bldg. STE 203, 660 S. Mill Ave. Tempe, AZ 85281
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 1539-9087/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 C. E. Tuncali et al.

However, currently, the autocode generation processes of commercial tools focus on
single-core systems. Namely, at the model level, there is no automatic support for
producing code that runs on a multi-core system. This is problematic since advanced
control algorithms, e.g., Model Predictive Control algorithms [Huang et al. 2013], are
computationally demanding and may not be executed within the limited computation
budget of a single-core embedded system. In this paper, we address this problem at the
model level. Namely, given a data flow diagram of an embedded control algorithm, the
worst-case execution times of the blocks and a computation budget (deadline or sam-
pling period), can we automatically map the blocks of a model onto multiple sub-models
which are executed on different cores and the real-time constraints are satisfied?

Depending on system requirements, the controller model can have single or mul-
tiple sampling rates. For instance, communicating with different hardware systems
may require different subsystems to operate with different sampling periods/rates.
In addition, for satisfying the hardware interface and performance requirements or
for maintaining stability the system, the system designer has to determine the opti-
mal sampling periods for the subsystems [Åström and Wittenmark 1997]. Most model
based design tools, e.g. Simulink from The MathWorks Inc. [2015], support multi-rate
design. For multi-rate designs, the problem of mapping the blocks onto the cores re-
quires an analysis for the interaction between blocks with different sample rates and
a consideration of the task scheduling algorithm on the target platform.

In particular, we focus on control models built in the Simulink MBD environment.
Our goal is to produce a framework which determines the mapping of each block onto
a CPU core and an execution order of the blocks inside the tasks. We aim at creating a
single task for each sample rate on a CPU core, i.e., a single task on each core for single-
rate models and possibly multiple tasks on each core for multi-rate models. A task
contains all the blocks with the same sample rate which are mapped on the same core.
Our consideration for scheduling the tasks on the target platform is based on the rate-
monotonic scheduling algorithm which is a fixed priority partitioned scheduling mech-
anism (task migration between CPU cores is not allowed). Especially, in safety-critical
systems, scheduling in a predictable and deterministic manner is highly important for
verification and satisfying the certification requirements that are mandated by regula-
tory authorities. For example, multi-core architectures are classified as highly complex
in the 2011/6 final report of European Aviation Safety Agency, EASA [2012] and in the
Certification Authorities Software Team position paper CAST-32 Multi-core processors
[2014]. These classifications highlight the difficulty of certifying safety-critical systems
that are based on multi-core architectures.

In our previous work [Tuncali et al. 2015], our approach for single-rate models is
explained. Our approach is based on having separate executables for each core while
Simulink blocks are allocated in each core and executed in the execution order that
we compute. In other words, we determine the execution order of the blocks inside
each core while respecting the data dependencies between them. In this paper, we are
extending our approach for single-rate models to multi-rate models. Our approach for
the multi-rate models is based on seeking a mapping of the blocks onto different tasks
on the CPU cores and an execution order of the blocks within the tasks in order to
satisfy the deadline requirements of all the tasks. After code generation, we have a
separate task for each sampling period in a model. The scheduling of the tasks should
be taken into account for parallelizing multi-rate models. It must be guaranteed that
the preemptions of the low priority tasks by the high priority tasks does not cause
deadline misses. In particular our MILP formulation for multi-rate models incorpo-
rates scheduling related constraints between the tasks with different rates.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Automatic Parallelization of Multi-rate Simulink Control Models for Multi-core Architectures A:3

The contributions of this paper are,

1. providing a practical, automated solution to the Simulink model parallelization prob-
lem for multi-core architectures while considering the deadline requirements and
scheduling of the parallelized application on the target platform, and

2. extending available Mixed Integer Linear Program (MILP) formulations for paral-
lelizing control models to allow multi-rate execution.

2. RELATED WORK

There is a large amount of research being done on the optimization of scheduling mul-
tiple tasks on multi-core processors or multiple processors in the literature.

An exhaustive survey on real-time scheduling techniques for homogeneous multi-
processor architectures is provided by Davis and Burns [2011]. That survey evaluates
different techniques by discussing their advantages and disadvantages. The authors
state the main practical advantage of statically assigning the tasks onto the processors
as the ability to apply available uniprocessor scheduling techniques and analyses on
each processor in the system.

There are multiple studies on task parallelization. For optimal mapping of tasks to
CPU cores, Yi et al. [2009], Bender [1996] and Ostler and Chatha [2007] discuss inte-
ger linear programming (ILP) techniques which constitute the foundation for our op-
timization formulation. The aforementioned approaches can be applied to single-rate
Simulink models by substituting the tasks in the formulation with Simulink blocks,
i.e, considering the blocks as tasks with dependencies. On the other hand, for multi-
rate models, a set of blocks with the same rate should be considered as a single task
in those approaches but this eliminates the parallelization opportunities inside a task.
For most realistic models which consist of a significant number of blocks, ILP based
approaches require introduction of heuristics to find an optimal or sub-optimal solu-
tion in a reasonable amount of time. Yi et al. [2009] take use of available loop level
parallelism or functional pipelining in the system. An efficient constraint program-
ming approach to the task allocation problem is described by Hladik et al. [2008]. The
authors introduce a constraint programming approach to solve the static task alloca-
tion to distributed processors problem. Their algorithm can also prove non-existence
of a solution when it cannot find one. Another interesting feature of their algorithm is
that it separates the allocation problem from the scheduling problem. Their algorithm
incorporates a method for learning from the schedulability analysis to remodel the allo-
cation problem and improve performance. However, the only experiment results given
in that work is with 40 tasks and scalability of that approach is not studied. Another
constraint programming based approach for parallel execution of safety-critical appli-
cations is studied by Puffitsch et al. [2015]. The objective of that work is executing the
tasks of Prelude applications on multi- and many-core architectures where the tasks
are scheduled by non-preemptive offline scheduling. Our work differs from that work
in the sense that we are doing the multi-core mapping of the blocks in a model which
results in splitting a task into subtasks which runs on different cores where the tasks
in a core are scheduled by a preemptive rate-monotonic scheduler. Cotton et al. [2011]
discuss the use of SMT solvers and multi-criteria optimization for mapping tasks to
multi processors. Application of SMT solvers in many-core scheduling for data parallel
applications is discussed by Tendulkar et al. [2014]. Feljan and Carlson [2014] propose
a heuristic, which utilizes information on how tasks delay each other, for finding a good
solution for task allocation problems in a short solver execution time.

There are also several studies focusing on the parallelization of Simulink models.
Kumura et al. [2012] propose methods to flatten Simulink models for parallelization
without giving a detailed description of the optimization formulation. In that work,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 C. E. Tuncali et al.

Simulink blocks are considered as tasks. Canedo et al. [2010] introduce the concepts of
strands for breaking the data dependencies in the model to achieve thread level par-
allelism in multi-core. The authors define a strand as a chain of blocks that are driven
by Mealy blocks. The proposed method searches for available strand split points in
Simulink models and it is heavily relying on strand characteristics in target mod-
els. Cha et al. [2011] have focused on automating code generation for multi-core sys-
tems where the parallel blocks are grouped by user-defined parallelization start and
end S-functions into the model. An approach for worst-case execution time analysis
of Simulink models is described by Kirner et al. [2000]. Although WCET analysis is
crucial for going from Simulink models to executables on a multi-core system, we don’t
focus on WCET analysis in our work but we assume the WCET of the blocks are readily
available as an input. A compiler level parallelization of code generated by Simulink
is studied by Umeda et al. [2015]. The authors propose an automatic parallelization
approach using the OSCAR compiler. While Umeda et al. [2015] propose a compiler
level parallelization approach, we approach the problem at the model level. We believe
that the model level parallelization provides a better architectural picture for control
engineers since they can see the functional partitioning in the model. This helps the
engineers to understand the parallel execution better and to debug easier.

Deng et al. [2015] study model-based synthesis flow from Simulink models to AU-
TOSAR [2015] runnables and runnables to tasks on multi-core architectures. The au-
thors extend the Firing Time Automation (FTA) [Lublinerman and Tripakis 2008]
model to specify activations and requested execution time at activation points. They
define modularity as a measure of number of generated runnables and reusability as
a measure of false dependencies introduced by runnable generation. The authors use
modularity, reusability and schedulability metrics for evaluation of runnable genera-
tions. They also propose different heuristics and compare their results with the results
obtained by utilizing a simulated annealing algorithm. Although that work is target-
ing a similar problem to our target problem for single-rate models, they are providing
experiment results for systems with less than 50 blocks and they are not considering
inter-core communication and memory overhead.

A study on multi/many-core execution of multi-rate Simulink models is done by
Pagetti et al. [2014]. Authors describe an approach to execute multi-rate Simulink
models on multi/many-core architectures. However, for this purpose the authors pro-
pose doing a translation from Simulink models to Prelude [Forget et al. 2010]. Our
work differs from that since we focus on finding a mapping of blocks on the avail-
able CPU cores for meeting deadline and shared memory related constraints. We do
code generation directly for execution on the target architecture while Pagetti et al.
[2014] focus on translation to Prelude without seeking a feasible mapping of the input
model/blocks to the target cores.

A linear programming approach for partition scheduling problem for strictly periodic
tasks on multiprocessor integrated modular avionics (IMA) architectures is studied by
Al Sheikh et al. [2012]. The authors incorporate available resource constraints like
memory limitations along with IMA related constraints into their linear programming
formulation. They are also proposing a game theory based, best-response algorithm
as a heuristic which is proven to converge. Our work differs from that work by the
heuristics we introduce and our model level approach which creates a parallelization
before the code which forms the tasks is generated.

A scheduling methodology for multi-core systems is described by Elhossini et al.
[2010], where directed acyclic graphs for the tasks are used for task partitioning. The
approach in that work groups the tasks in a system as ordinary tasks and multi-rate
tasks. The ordinary tasks are defined as the tasks that must be executed at every cycle
of the system and the multi-rate tasks are defined as the tasks that do not need to be

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Automatic Parallelization of Multi-rate Simulink Control Models for Multi-core Architectures A:5

executed at every cycle but the tasks that can be scheduled during idle times of the
schedule. The problem targeted in that work differs from ours since in our problem
tasks cannot be grouped as ordinary and multi-rate tasks as it is done in that work.
Instead, we are dealing with a set of tasks consisting of blocks of a model design where
all the tasks have different rates and must complete within their periods under an
available scheduling algorithm.

The scalability of the constraint programming based approaches is studied by
Gorcitz et al. [2015]. The authors experimentally showed that the constraint program-
ming based approaches can be efficiently used for small to medium sized systems but
they diverge rapidly when the system becomes larger. The authors also state the neces-
sity of heuristic method for larger systems, which is along the lines of the experiment
results in our work.

The use of conditional sporadic directed acyclic graph (DAG) tasks by Baruah [2015]
have similarities to our approach for multi-rate models where execution order depen-
dencies of the blocks, induced by the block-dependency graphs of different sample
rates, change for different firing times with possible preemptions of the tasks at the
firing times.

Our work mainly differs from the other works in literature by

1. providing a complete flow for automatically parallelizing single- and multi-rate
Simulink models,

2. incorporating the communication time cost in the optimization problem both in the
transmitter and the receiver side,

3. having total available shared memory and task priority constraints, and
4. being able to handle large models with more than 100 blocks in a reasonably short

time using the proposed heuristics.

3. PROBLEM DESCRIPTION

3.1. Preliminaries

Model based design platforms like Simulink from The MathWorks Inc. [2015], SCADE
Suite from Esterel Technologies [2015] and Ptolemy [Eker et al. 2003] utilize syn-
chronous block diagrams for describing the model of a system. Figure 1 displays a sam-
ple block diagram from a simple Simulink model. A clear description of synchronous
block diagrams is given by Lublinerman et al. [2009]. Here, we will give a brief sum-
mary of this description. A synchronous block diagram contains blocks (possibly inside
other blocks), each with nonnegative number of input and output ports, and the con-
nections between the blocks through their input and output ports. A block can either
be macro or atomic. A macro block encapsulates a block diagram. An atomic block can
be defined as a block that cannot be partitioned into smaller blocks. Flattening op-
eration on block diagrams is to remove the hierarchy hidden inside macro blocks by
replacing the macro blocks with the block diagrams they are encapsulating until no
macro blocks are left. Macro blocks correspond to the virtual subsystems in Simulink.
Details on the flattening operation can be found in [Lublinerman et al. 2009].

Every block in a synchronous block diagram has a sampling rate which describes the
rate at which the block is executed during the execution of the system being modeled.
If all the blocks have the same sampling rate, the model is referred as a single-rate
model. Otherwise the model is referred as a multi-rate model.

For describing the problem that we are targeting, it is convenient to represent the
dependencies between the blocks of a synchronous block diagram in a graph structure.
For this, we first flatten the given block diagram. Figure 2 gives an example to a flat-
tened block diagram where the “Subsystem” block in the Figure 1 is replaced with the
block diagram it encapsulates.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 C. E. Tuncali et al.

1
In1

2
In2

1
Out1

Add

Product

1

Constant

5

Constant1

In1

In2
Out1

Subsystem

[Goto1]

Goto

[Goto1]

From

Divide

3
In3

2
Out2

Fig. 1. Simulink Block Diagram

1
In1

2
In2

1
Out1

Add

Product

1

Constant

5

Constant1

Divide

3
In3

2
Out2

Z-1

Delay
Subtract

Product1

10

Constant2
[Goto1]

Goto

[Goto1]

From

Fig. 2. Flattened Block Diagram

1
In1

2
In2

1
Out1

Add

Product

1

Constant

5

Constant1

Divide

3
In3

2
Out2

Z-1

Delay
Subtract

Product1

10

Constant2

Fig. 3. Main Block Diagram

Model based design tools supply some blocks to the user for routing signals inside
the diagram in a visually clear way. An example to this situation is the use of “Goto”
and “From” blocks in a Simulink model instead of routing a line from its source to
its destination. Since these blocks do not represent any operation done by the system
that is being modeled, we call these blocks as virtual routing blocks and replace these
blocks with lines representing the data connections between the blocks. Figure 3 gives
an example of such a transformation. The “Goto” - “From” pair in Figure 2 is replaced
with a line in Figure 3. After flattening and replacing the virtual routing blocks with
lines we end up with a block diagram which contains input and output ports of the
system, the blocks, where every block is atomic and represents an operation carried by
the system, and the interconnections between the blocks. We call such a block diagram
as a main block diagram.

Definition 1: A block dependency graph G = (V,E) is a graph representation of a
main block diagram. It is an acyclic directed graph with the vertex set V = {vi : i ∈
[1, n]} where |V| = n and the set E of directed edges.

Figure 4 illustrates a sample block dependency graph which corresponds to the main
block diagram given in Figure 3. Each vertex of a block dependency graph represents
a block in the main block diagram. There is a one-to-one correspondence between the
vertices in V and the blocks in the main block diagram. As a notation, we will use vi
in order to refer to the block which the vertex v i ∈ V corresponds to. A directed edge
(i, j) ∈ E is sourced from the vertex vi and has the vertex vj as its destination. Such
an edge represents existence of a direct data connection from the output ports of the
block vi to the input ports of the block vj . In a main block diagram, there can be data
connections representing data transfers from previous iterations of their source blocks.

8 8

8

8 8

8

8 8 8

8

In1 In2

In3Add

Constant Constant1

Divide

Product

Out1Out2

Delay

Subtract

Fig. 4. A Block Dependency Graph

We call the blocks with such incoming
data connections as delay introducing
blocks. The edge set E of a block depen-
dency graph excludes such data connec-
tions. Every edge (i, j) ∈ E has an as-
sociated positive weight ci,j which rep-
resents the amount of the data trans-
ferred from the block vi to the block vj .
When the blocks vi and vj are executed
on different CPU cores, there will be
a communication cost in terms of time
for transferring ci,j amount of data be-
tween the CPU cores. The communica-
tion cost for such a connection is divided
into transmission and reception parts
where txi,j denotes the time required for
transmission part of the communication
and rxi,j denotes the time required for

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Automatic Parallelization of Multi-rate Simulink Control Models for Multi-core Architectures A:7

reception part of the communication. For
each block vi ∈ V, its worst-case execution time (WCET) is denoted by wi and its sam-
pling period is denoted by πi.

3.2. Problem Definition

We are addressing the problem of automatically parallelizing synchronous block dia-
grams on to multi-core architectures to satisfy WCET constraints on the target plat-
form. We have different problem definitions for single- and multi-rate models.

Assumptions 1:

(a) All of the CPU cores on the target platform are identical.
(b) The time cost for data communication between a pair of blocks on different CPU cores

is identical for any pair of CPU cores.
(c) The time cost for transferring some data between a pair of blocks on the same CPU

core is zero.
(d) There are no cycles in the given block dependency graph.
(e) The execution order dependencies of the blocks with the same period are only defined

by the data dependencies between them.
(f) All the blocks with a period π become available to execute at every π amount of time

and they all must complete their execution in π amount of time after they become
available.

Assumptions 2:

(a) Distinct sampling periods in the model are harmonic.
(b) On the target platform, for each CPU core, there will be a separate task for each

distinct period for the blocks with that period and mapped on that CPU core.
(c) On the target platform, tasks within a CPU core will be scheduled by a rate-

monotonic scheduling algorithm.
(d) No protected resource is shared between the blocks with different sampling periods.

Any resource sharing between the same-rate blocks is known in advance.

Problem 1 - Single-rate models: Given the number m of available CPU cores
on the target platform and a block dependency graph G = (V,E) such that π1 =
... = πn = π where n = |V|, compute an optimal mapping of the blocks to the target
CPU cores and an execution ordering of these blocks with an objective of minimizing
the makespan of all the blocks within their period on the target platform. Report if
no feasible solution can be found which allows a makespan shorter than the period
π. Here, makespan can be defined as the overall completion time of execution of all
blocks. We impose the Assumptions 1 on this problem.

In [Tuncali et al. 2015] we focused on the Problem 1 for single-rate embedded control
applications which are modeled in Simulink. In this paper we extend the discussion to
the multi-rate models.

Problem 2 - Multi-rate models: Given the number m of available CPU cores on
the target platform and a block dependency graph G = (V,E) such that πi �= πj for
some vi, vj ∈ V, compute a mapping of the blocks to the target CPU cores and an
execution ordering of these blocks so that execution of every block can be started and
finished within its period on the target platform. We impose the Assumptions 1 and 2
on this problem.

3.3. Solution Overview

In this paper we are focusing on the Problems 1 and 2 for Simulink models. Our target
platform is Qorivva MPC5675K-based evaluation board from Freescale Semiconduc-
tor Inc. [2015]. The processor is a dual-core 32-bit MCU which is targeting automotive

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 C. E. Tuncali et al.

applications. The µC/OS-II from Micrium Inc. [2015] is ported to our target platform
and a library to support Simulink code generation is devised for the platform by Bu-
lusu [2014]. Simulink Coder [The MathWorks Inc. 2015] is used for code generation
from the models. In multitasking mode, which is the case for multi-rate models, the
Simulink Coder combines the blocks of the same rate into a task which is scheduled by
a rate-monotonic scheduler on a single core. For this reason, our approach is based
on combining blocks of same rate which are mapped on the same core in a single
task. Priorities of these tasks increase as their sampling periods decrease. Each core
on our target platform has a separate copy of µC/OS-II kernel. The multi-core opera-
tion is supported by utilizing inter-core synchronization and communication protocols
through a shared memory space as described by [Bulusu 2014]. The operating system
kernel on each core uses rate-monotonic scheduling algorithm for scheduling the tasks
within the core. Preemption of the tasks is allowed.

An overview of our approach to the Problems 1 and 2 is illustrated in the Figure 5.
Although our approach for these two problems have some differences that are ex-
plained later in this section, the illustration given in Figure 5 is applicable to both
problems. In this section we will first explain our approach for the single-rate models
and than extend the discussion to the multi-rate models.

We approach the Problem 1 which is for single-rate models in five steps as described
in our previous paper [Tuncali et al. 2015]. (1) Creating a block dependency graph
from the given block diagram. Description of a block dependency graph is given in
Definitions 1. Task-data graphs are discussed by Cotton et al. [2011]. We use a sim-
ilar approach using blocks instead of tasks, the worst-case execution times of blocks
instead of the amount of work associated with tasks and using size of data commu-
nication between blocks. (2) Finding an optimal or near optimal mapping of blocks
to different CPU cores by formulating a Mixed-Integer Linear Program (MILP) and
solving the resulting optimization problem with off-the-shelf MILP solvers. Details of
our MILP formulation are given in Section 4. (3) Automatically updating the origi-
nal Simulink model by adding inter-core communication blocks where necessary in
accordance with the most optimal solution. We handle inter-core data communications
by utilizing available shared memory and inter-core semaphores which are used for
synchronization between tasks across cores and protecting global critical sections as
described in [Bulusu 2014]. For the purpose of utilizing this approach in Simulink,
we model the transmission and reception of data with two separate S-function blocks
which implement inter-core transmission and reception using inter-core semaphores
and shared memory. We will refer to these S-function blocks as inter-core communica-
tion blocks. (4) Generating separate code for each target core. We first partition the

Main Block Diagram

Block Dependency Graph

Mapping of the Blocks Multicore Code Generation

Compilation & DeploymentUpdated Block Diagram

MILP

Fig. 5. An Overview of our Approach

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Automatic Parallelization of Multi-rate Simulink Control Models for Multi-core Architectures A:9

model into separate models for each core. For this, we create a copy of the model for
each core and automatically comment out the blocks that are not mapped to the cor-
responding core. Then, we do Simulink code generation from each these model copies.
(5) Compiling the generated code and deploying it on the target platform. Since we do
separate code generation for each core, we compile the generated code for each core
and deploy each of the executables on its corresponding core.

Our approach for the Problem 2 which is for multi-rate models follows similar steps
as our approach for the Problem 1 with modifications in some of these steps. Firstly,
as well as creating a block dependency graph for the model as a whole, we also cre-
ate a separate block dependency graph for each distinct sampling period in the model.
In the second step, instead of optimizing with an objective function, we are utilizing
MILP solvers for seeking a feasible solution to satisfy the worst-case execution time
limits imposed by the periods of the blocks. For this purpose we first calculate a hy-
perperiod from the distinct periods in which a block may become available to execute
more than once. In our MILP formulation, we are targeting to find a solution for one
hyperperiod since the execution of the system on the target platform repeats itself at
every hyperperiod. Details of our MILP formulation are described in Section 4. For
the multi-rate models, since the transmitter and the receiver block of some commu-
nicated data can have different periods, communication between such blocks require
rate-transition blocks. As a communication mechanism between different rate blocks
on different cores, we utilize asynchronous three-slot mechanism described by Chen
and Burns [1997]. Implementation details of this mechanism, which we will refer as
inter-core rate-transition blocks on our target platform are explained by Bulusu [2014].
For the blocks with same rate which are executed on different cores, we use the same
inter-core communication mechanism that we use in the third step of our approach to
the Problem 1. Although there is no difference in the final two steps of our approach
from our approach to the Problem 1, the generated code from a multi-rate Simulink
model has a separate function for each distinct sample time. We place each of these
functions in a separate task in the executables for the target CPU cores.

4. MILP FORMULATION

In this section we present our mixed integer linear programming formulation for
the parallelization problem of synchronous block diagrams. An MILP formulation for
single-rate models was described in our previous work [Tuncali et al. 2015]. In this
paper we are extending this formulation for multi-rate models. Our MILP formulation
is based on the formulations proposed by Yi et al. [2009], Bender [1996] and Ostler
and Chatha [2007]. We introduce an extension to these formulations by dividing the
cost of communication to the transmission and reception parts, by adding a constraint
on usage of the available shared memory for inter-core communications and extending
the formulation to address the multi-rate models. Our MILP formulation for multi-
rate models seeks for a feasible solution that satisfies the constraints induced by the
desired block periods and available shared memory on the target platform without
having any objective function. In Subsection 4.5, we describe our heuristic techniques
for reducing the number of constraints for allowing the MILP solvers to find better
solutions within a feasible time.

The blocks mapped on the same core with the same period will be executed in the
same task. So, there will be a separate task for each distinct sampling period of the
blocks that are mapped to the same core.

Since our target platform uses rate-monotonic scheduling algorithm and allows pre-
emption of task executions, a task can be preempted by another task of the same core
which arrives later and contains blocks with smaller periods. Also, when low priority
and high priority tasks are available at the same time, the tasks with lower priorities

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 C. E. Tuncali et al.

will wait for higher priority tasks to either complete or get blocked. We have con-
straints for introducing these behaviors into our formulation with some exceptions. In
our problem, a high priority task, say T , can be blocked when it is waiting data arrival
from the tasks on different cores. In such a case, a lower priority, ready task can start
its execution while the task T is blocked. This behavior is not in our MILP formulation
which will assume no task will be executed in this period. So, even though the low
priority task is computed to be executed after the high priority task according to our
formulation, in the actual execution, it can start earlier. Another exception is related
to the preemption of a task while it is executing a block. In our formulation, we as-
sume that a block inside a task which starts execution must complete before it can be
preempted by a higher priority task. When this may not be possible in the worst case,
it should not start its execution until the tasks which can preempt it are completed.
Although our formulation does not formulate it, in an actual execution, a block of low
priority task can start its execution and be preempted in the middle of its execution.
Because of these exceptions, our formulation is pessimistic for completion time of low
priority tasks. Here our assumption is no two tasks on different cores with different pe-
riods share a protected resource. This assumption must hold for not experiencing any
anomaly in the scheduling of the tasks as described by Graham [1969] and Thiele and
Kumar [2015]. One can also force this execution ordering in the formulation to be re-
flected to the target platform by introducing synchronization using global (inter-core)
semaphore structures. Details of such mechanisms are not discussed in this paper.

4.1. Notation and Constants

The notation used for the MILP formulation is given in the Table I. The notation given
for the problem description in the Section 3 is also valid for the MILP formulation and
for convenience we repeat this notation in the Table I.

The block dependency graph G must be acyclic as it is defined in the Section 3.
Since algebraic loops are not allowed in Simulink, a main block diagram of a Simulink
model cannot have cycles due to algebraic loops. However, the main block diagram of
a Simulink model can have cycles which contain at least one (delay introducing) block
which is introducing data dependencies to previous iterations of a model execution
(e.g., Unit Delay, Memory, Integrator, etc). When creating a block dependency graph,
we discard the incoming connections to the delay introducing blocks from their pre-
decessor blocks. Since those discarded connections represent data dependencies to an
earlier iteration of the execution, discarding them does not affect the dependency re-
lations that we are formulating. However, since these deleted connections will not go
into our formulation, if no precaution is taken, the formulation will not consider the
inter-core communication between a delay introducing block and its predecessor block
when they are mapped to different cores. In order to avoid this issue, we force any
delay introducing block and its predecessor to be mapped on the same CPU core by
introducing a constraint.

We do not allow different rate blocks to share protected resources. Because such a
case can create scheduling anomalies. Same-rate blocks accessing shared resources
are assumed to be known in advance. We add such blocks into the set Z as if there
was a connection between these blocks. This forces such blocks to be on same core and
consequently in the same task due to the constraints in the formulation.

For a single-rate model, all block periods are π, r = 1, R = {R1 = π}, V1 = V,
E1 = E, G1 = G, f = 1, H = π, F = {0} and M = {vi,0 : vi ∈ V}.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Automatic Parallelization of Multi-rate Simulink Control Models for Multi-core Architectures A:11

4.2. Variables

Variables used in the MILP formulation can be listed as follows:
bi,p: A boolean variable indicating whether the block vi is mapped to the core Pp or

not. It is defined for all vi ∈ V and for all Pp ∈ P . If vi is mapped to core Pp, then bi,p
takes value 1. If vi is mapped to another core, then bi,p takes value 0.
di,j : A boolean variable indicating whether the block vi executes before or after the

block vj when both blocks are mapped to the same core. It is defined for all pairs of
same period blocks which do not have any data dependency to each other which means,
for all i, j such that (i, j) /∈ E, i < j and vi, vj ∈ Vk where Rk ∈ R. If vi executes before
vj , then di,j takes value 1 and if vi executes after vj , then di,j takes value 0 when these
blocks are mapped to the same core. The variable di,j does not have a meaning when
the blocks vi and vj are mapped to different cores.
d′i c,j : A boolean variable indicating whether a block finishes its execution before it

can be preempted by executions of blocks with smaller period in an upcoming firing
time. It is defined for all blocks vi,c ∈ M and Fj ∈ F such that c · πi < Fj < (c + 1) · πi.
The variable d′i c,j takes value 1 if vi,c finishes its execution before the firing time Fj . It
takes value 0 if vi,c starts its execution after all of the blocks in Mk,z that are mapped
to same core with vi finish their execution where k, z satisfy Rk < πi, (z ·Rk) = Fj .
si,c: The start time for the execution of the cth repetition of the block vi, i.e, vi,c. It is

defined for all vi,c ∈ M.

Table I. Notation used in MILP formulation

Notation Description
G = (V,E) A graph representation of the main block diagram. Namely a block dependency graph,

which is a directed acyclic graph
n The number of blocks in the main block diagram
V = {vi : i ∈ [1, n]} The vertex set, where each vertex corresponds to a block in the main block diagram
wi The worst-case execution time of the block vi

πi The sampling period of the block vi
E The directed edge set. Where (i, j) ∈ E corresponds to the data connection from the block

vi to vj excluding the connections to the delay introducing blocks
ci,j The amount of data transferred from the block vi to the block vj

txi,j / rxi,j The time required for transmission / reception part of the communication from vi to vj

when the blocks are executed on different cores
Z Set of the connections to delay introducing blocks which are not included in E
N The set of natural numbers
m The number of available CPU cores
P = {Pi : i ∈ [1,m]} The set of available CPU cores
r The number of distinct periods
R = {Ri : i ∈ [1, r]} The set of distinct sampling periods (“sample time” in Simulink)
rj the number of blocks with period Rj

Vj = {vj
i

: i ∈
[1, rj]}

The set of blocks which has a sampling period of Rj where Vj ⊆ V and
⋃r

j=1
Vj = V

Gj = (Vj,Ej) The induced subgraph of G on the vertex set Vj

H The hyperperiod, which is the least common multiple of all distinct periods in R
firing time Start of each period and its repetitions in the time interval [0, H)
F = {cγ : cγ < H,

γ ∈ R, c ∈ N} The set of distinct firing times

f The number of distinct firing times
vi,c cth repetition of a block vi ∈ V in the hyperperiod, where c ∈ N and cπi < H
M = {vi,c : vi ∈ V,

c ∈ N, cπi ∈ F} The set of the repetitions of the blocks

sSize The size of a global semaphore structure in bytes
cCount The number of copies of the data communicated inside the inter-core rate-transition struc-

ture
totMem Size of the total available shared memory in bytes
aSize Data alignment size in bytes (word size)
MAX A very large constant which is used in the program formulation to dominate other terms

allowing constraints to be ignored under certain conditions (big-M method)

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 C. E. Tuncali et al.

4.3. Constraints

— A block shall be assigned to a single core

∀vi ∈ V,
m∑
p=1

bi,p = 1 (1)

— Delay introducing blocks and their predecessor blocks (or protected resource sharing
blocks) shall be assigned to the same core

∀zi,j ∈ Z ∧ ∀Pp ∈ P, bi,p − bj,p = 0 (2)

— Start time of every repetition of a block shall be greater than or equal to its firing
time

∀vi,c ∈ M, si,c ≥ c · πi (3)
— Execution of every repetition of a block shall be completed within the block’s period

∀vi,c ∈ M, si,c + wi ≤ (c+ 1) · πi (4)

— If there is a data connection from a block vi to a block vj where both blocks have
the same period, then block vj shall not start execution until (i) block vi finishes
execution and transmission of its output data to its successor blocks that are mapped
on other cores and (ii) block vj finishes receiving all of its input data that are sent by
the blocks on other cores
Considering that the block vi is mapped to the core Pp and vj is mapped to the core
Pq where p can be equal to q,

∀Pp, Pq ∈ P, ∀vi,c, vj,c ∈ M s.t. (i, j) ∈ E, vi, vj ∈ Vk, πi = πj = Rk ∈ R,

si,c+wi+
∑

vx∈Vk

[txi,x(1−bx,p)] ≤ sj,c−
∑

vy∈Vk

[rxy,j(1−by,q)]+(2−bi,p−bj,q) ·MAX (5)

— Execution of the independent blocks with the same period that are mapped to the
same core shall not overlap
Considering an independent pair of blocks vi and vj , are mapped to the core Pp, we
have two different constraints for this requirement.

∀Pp ∈ P, ∀vi,c, vj,c ∈ M s.t. (i, j) /∈ E, vi, vj ∈ Vk, πi = πj = Rk ∈ R,

si,c+wi+
∑

vx∈Vk

[txi,x(1−bx,p)] ≤ sj,c−
∑

vy∈Vk

[rxy,j(1−by,p)]+(3−bi,p−bj,p−di,j) ·MAX

(6)

sj,c+wj+
∑

vy∈Vk

[txj,y(1−by,p)] ≤ si,c−
∑

vx∈Vk

[rxx,i(1−bx,p)]+(2−bi,p−bj,p+di,j) ·MAX

(7)
Since MAX is a very large constant, (6) will be valid when block vi,c executes before
vj,c i.e., when di,j = 1 and (7) will be valid when block vi,c executes after vj,c i.e., when
di,j = 0.

— A block shall (i) either finish execution and output transmission before an upcoming
firing time where smaller period block executions are fired (ii) or start execution
after all the blocks with a smaller period in an upcoming firing time are finished

∀Pp ∈ P, ∀vi,c, vj,c′ ∈ M, ∀Fw ∈ F s.t. cπi < Fw < (c+ 1)πi

where πi = Rk ∈ R i.e, vi ∈ Vk,πi > πj = Rl ∈ R i.e, vj ∈ Vl,Fw = c′πj , c′ ∈ N,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Automatic Parallelization of Multi-rate Simulink Control Models for Multi-core Architectures A:13

si,c + wi +
∑

vx∈Vk

[txi,x(1− bx,p)] ≤ Fw + (2− bi,p − d′i c,w) ·MAX (8)

sj,c′+wj+
∑

vy∈Vl

[txj,y(1−by,p)] ≤ si,c−
∑

vx∈Vk

[rxx,i(1−bx,p)]+(2−bi,p−bj,p+d′i c,w)·MAX

(9)
Since MAX is a very large constant, (8) will be valid when block vi,c executes before
Fw i.e., when d′i c,w = 1 and (9) will be valid when block vi,c executes after low period
blocks fired at Fw i.e., when d′i c,w = 0.
Considering the execution order between a block and an upcoming firing time, the
following constraint must also be added to make sure that if the parameter d′

i c,w is 0
(block vi,c executes after Fw), then d′i c,w̄ is also 0 for all Fw̄ < Fw (block vi,c executes
after Fw̄).

∀vi,c ∈ M, ∀Fw, Fw̄ ∈ F s.t. cπi ≤ Fw̄ < Fw < (c+ 1)πi,Fw = c′πj , Fw̄ = c′′πk

where πi > πj , πi > πk, πi, πj , πk ∈ R, c′, c′′ ∈ N,

d′i c,w̄ < d′i c,w (10)

— Blocks shall not start execution until other blocks with smaller periods from same or
previous firing times finish their execution and transmission of their outputs when
these blocks are mapped to the same core

∀Pp ∈ P, ∀vi,c, vj,k ∈ M, Fw ∈ F s.t. Fw = c′πj ≤ cπi < (c′ + 1)πj

where c, c′ ∈ N, πi = Rk ∈ R i.e, vi ∈ Vk and πi > πj = Rl ∈ R i.e, vj ∈ Vl,

sj,c′+wj+
∑

vx∈Vk

[txj,x(1−bx,p)] ≤ si,c−
∑

vy∈Vl

[rxy,i(1−by,p)]+(2−bi,p−bj,p)·MAX (11)

— Since the inter-core communications are done over the available limited shared mem-
ory space, the total memory needed for semaphores and communication buffers shall
be less than or equal to total amount of available shared memory

m∑
p=1

[∑
(i,j)∈E, πi=πj

[(
sSize+

⌈ ci,j
aSize

⌉
· aSize) · |bi,p − bj,p|

]

+
∑

(k,l)∈E, πk �=πl

[(
sSize+ cCount ·

⌈ ck,l
aSize

⌉
· aSize) · |bk,p − bl,p|

]]
< totMem

(12)

4.4. Objective Function

For single-rate models (i.e, πi = π, ∀vi ∈ V), we are focusing on the Problem 1 where
the goal is to minimize the makespan for one iteration of the model execution. For this
purpose, the objective function for the MILP problem is to minimize π as described in
our previous paper [Tuncali et al. 2015].

For multi-rate models, i.e, πi �= πj for some vi, vj ∈ V, we do not impose any objective
function on the MILP formulation as it already includes the scheduling constraints.
Since single-rate models can be considered as a special case of the multi-rate models,
one can also use the multi-rate approach for parallelization of single-rate models. With

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 C. E. Tuncali et al.

this approach, instead of seeking the minimum makespan, one can seek a feasible
mapping for a predetermined makespan which can also help in decreasing the solver
execution time for single-rate models.

4.5. Improving Solver Execution Time

In this section, we introduce our heuristic techniques for dealing with large models.
The heuristics described in this section are targeting single-rate models, i.e, Problem
1. These heuristics can be adapted for Problem 2 as well. That is, for multi-rate models,
they can be by applied only to the blocks of the same rate. However, we do not expect
them to be as useful as they are for Problem 1 since they can eliminate opportunities
to fit blocks with lower rates in between the completion time of the higher rate blocks
and the upcoming firing times.

For two same-rate blocks, if there exists a directed path between the corresponding
vertices in the block dependency graph, we say these blocks are dependent to each
other. Otherwise we say these blocks are independent to each other.

The majority of the constraints in the MILP formulation are related to execution
ordering of the independent blocks, i.e, the inequalities (6) and (7). This is because,
for blocks dependent to each other, execution of each block has constraints related the
directly connected blocks. These relations also impose lower and upper bound for ex-
ecution time of the blocks and limit the search space for each block’s execution. So,
the solver execution time is not dramatically effected by increasing number of depen-
dent blocks. However, there are constraints between each pair of independent blocks.
This combinatorial relations result in quadratically increasing number of constraints
as the model size increase for most practical models. The heuristics we introduce are
targeting to decrease the number of or completely eliminate these constraints for in-
dependent blocks. These heuristics impose some restrictions on execution ordering of
the blocks. So, given infinite time, the solver will be seeking a less optimal solution.
However, since we limit the solver execution time, it becomes very hard, if not impos-
sible, to find an optimal solution without heuristics and even though it is not optimal,
the solver can find better solutions with the heuristics.

4.5.1. Partially ordering independent blocks. In order to have more parallelization oppor-
tunities in a model, the main block diagram must preferably have a large number of
blocks that are independent to each other. Typically, in an industrial size model with a
large number of blocks, both the number of blocks that are independent to each other
and the number of blocks that are dependent to each other are large. However, if the
number of blocks that are independent to each other is very large, when we consider
all possible combinations of execution orders between these independent blocks, the
number of constraints introduced by inequalities (6) and (7) becomes very large. As a
consequence, finding an optimal solution within a feasible time becomes harder.

We address this problem by deciding the execution order between certain pairs of
independent blocks, say vi, vj , in advance. That is, before formulating the optimization
problem, we decide the values of the di,j variables for these block pairs. Since the
di,j variables become constants in this case, the MILP solver does not need to seek
their values. Also, since at least one of the inequalities (6) and (7) in the constraints
become invalid (satisfied always), the number of constraints the MILP solver must try
to satisfy decreases. Note that, our execution order decision is valid only when these
blocks are mapped onto the same core. So this should not prevent these blocks to be
mapped on different cores and, hence, be executed in a different order than what we
specify.

Our partially ordering heuristic is based on comparing the execution start time
frames of independent blocks. The execution start time frame of a block is de-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Automatic Parallelization of Multi-rate Simulink Control Models for Multi-core Architectures A:15

fined as the time frame between its best and worst-case start time values. The best
and the worst-case start time values of a block vi ∈ V are defined in the subsec-
tion 4.2 as bsi and wsi respectively. The variable bsi is determined by using the
best case completion time for all of the blocks corresponding to the vertices from
which there exists a path to vi ∈ V in G. In the best case, all of this workload
before the block vi is distributed equally on all of the cores. The best case start
time of vi is calculated as bsi =

(∑
k∈Yi

wk

)
/m where Yi = {vk : vk ∈ V, πk =

πi and there exists a path from vk to vi in G}. The variable wsi is determined by us-
ing the best case completion time for all of the blocks corresponding to the ver-
tices to which there is a path from vi ∈ V in G and the worst-case execution time
of the block vi itself, subtracted from the deadline. The worst-case start time of vi
is calculated as wsi = πi −

(
wi +

∑
k∈Yi

wk

)
/m where Yi = {vk : vk ∈ V, πk =

πi and there exists a path from vi to vk in G}.
For all independent block pairs vi, vj ∈ V, if

(
(bs(i) ≤ bs(j)) ∧ (ws(i) < ws(j))

) ∨(
(bs(i) < bs(j)) ∧ (ws(i) ≤ ws(j))

)
then we decide vi to execute before vj and set di,j to

1. Else if
(
(bs(i) ≥ bs(j))∧ (ws(i) > ws(j))

) ∨ (
(bs(i) > bs(j)) ∧ (ws(i) ≥ ws(j))

)
then we

decide vi to execute after vj and set di,j to 0. If we compute di,j as 1, then we replace
the di,j in the equation (6) with 1 and do not add the constraint given by the equation
(7) into our formulation. Similarly, if we compute di,j as 0, then we replace the di,j in
the equation (7) with 0 and do not add the constraint given by the equation (6) into our
formulation.

4.5.2. Fully ordering independent blocks. Even though ordering independent blocks using
the partially ordering heuristic improves the performance, this may not be enough for
models with very large number of blocks. For example we could not find a feasible
solution to models with more than 100 blocks with this approach. For dealing with
those large models we propose deciding the execution order of all the independent
blocks when they are mapped on the same core. The logic in fully ordering heuristic is
based on comparing the midpoints of the execution start time frames for these blocks.
For independent blocks vi, vj ∈ V, if (bsi + wsi)/2 < (bsj + wsj)/2 then we decide vi
to be executed before vj and vice versa if otherwise. So, we replace di,j values in the
equations (6) and (7) to the calculated values and do not add the constraint defined
by the equation (6) when di,j is 0 and similarly do not add the constraint defined by
the equation (7) when di,j is 1 into our formulation. Here the decided value for di,j

determines the ordering of the blocks only when they are mapped to the same core
and our discussion on the case when these blocks are mapped to different cores in the
previous subsection is still valid.

4.5.3. Merging highly coupled blocks. In this heuristic we merge blocks v i and vj when
block vj is the only block connected to the output port(s) of block vi and block vi is
the only block connected to the input port(s) of block vj . The merging operation copies
all incoming and outgoing edges of vj to vi except the edge (i, j) between these blocks.
Then it updates wi with wi + wj and finally deletes vj .

4.5.4. Merging small blocks with large blocks. In this heuristic we merge blocks v i and vj
based on their ratio of execution times. If block vj is the only block connected to the
output port(s) of block vi and the WCET of block vi is very small when compared to
the WCET of block vj , then block vi is merged into block vj . If block vi is the only
block connected to the input port(s) of block vj and the WCET of block vj is very small
when compared to the WCET of block vi, then block vj is merged into block vi. We
find this technique useful for reducing the number of blocks of concern in a way that
parallelization will be focused on blocks with higher impact on execution time. The

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 C. E. Tuncali et al.

ratio between the worst-case execution times of the blocks for determining a merge
operation can be defined depending on how much reduction is needed in the number
of blocks.

The merging methods described above can be used for decreasing the number of
nodes in very large models where the MILP solver can no more find a good solution.
These two techniques are also dependent on the structure of the model. Although, in
general, they assist in finding better solutions, there can be cases where the number
of nodes cannot be reduced to an acceptable level.

5. IMPLEMENTATION

In this section we describe the details of the implementation of our tool in MATLAB.
Some of the concepts explained here are described earlier in Section 3.

Our tool accepts as an input block diagram of a Simulink model that is ready to
compile. The user can as well input the desired depth of blocks to be parallelized. The
desired depth sets an upper bound on the hierarchical depth for the flattening opera-
tion done on the model block diagram. Even though the desired depth is set, if there
is a delay introducing block which has a larger depth, it will still be discovered and
flattening will be done in order to remove hierarchy for such a block. This is because a
block containing such a delay introducing block can cause a cycle in the block diagram
which must be handled. In Simulink, public “Goto”-“From” block pairs can create data
dependencies between the blocks in different hierarchical levels. So, for the subsys-
tems which have a public virtual (“Goto”-“From”) connection with any block outside
the subsystem, the user defined desired depth is ignored and flattening is done. Since
determining the WCET of each block is not in scope of this paper, we assume that the
WCET for each of the blocks are already determined and given as an input to the tool.

The first step in our approach is to create a block dependency graph from the given
model block diagram. Our tool loads the model block diagram, reads specific block
information, e.g., block type, parents, sample time etc., and all the relations between
blocks along with the width and size of the data on the ports. For data types that
are not built-in, the user input is required to define the data size in bytes. The block
diagram is flattened by taking blocks inside sub-systems out of their parent blocks
and by discarding the remaining blocks like input and output ports of subsystems
and the emptied subsystem container blocks. Simulink provides virtual routing blocks
like ‘Goto’ and ‘From’. These virtual routing blocks serves for the purpose of virtually
adding a line between the blocks. Thus these blocks do not really perform an operation
and they are only virtual blocks that help the designer to create connections between
the blocks in a cosmetically nice way. Our tool discards these virtual routing blocks
and considers them as regular lines connecting the blocks in the model. After these
operations we end up with having the main block diagram of the model as illustrated
in Figure 3.

Our tool then creates a directed graph representation of the main block diagram. The
vertices of this directed graph correspond the blocks in the main block diagram and
the directed edges correspond to the connections in the main block diagram, directed
from a block to another. Then the tool removes the incoming edges to delay introducing
blocks. The delay introducing blocks contain states that are initialized to a value and in
an iteration (including the first iteration), their outputs do not depend on their current
inputs but only to their internal states. Hence, removing the incoming edges of such
blocks remove any possible cycles without violating execution order dependencies. An
issue arising here is that since we remove these edges, the data connection from a block
to a delay introducing block is no more considered and we can fail to model an inter-
core communication if a delay introducing block and its predecessor block are mapped
to different cores. For resolving this issue we keep track of such blocks for forcing them

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Automatic Parallelization of Multi-rate Simulink Control Models for Multi-core Architectures A:17

to be mapped on the same core. Finally we have a block dependency graph of the main
block diagram as given in Figure 4.

In the case of applying the merge based heuristics given in Subsection 4.5 the merge
operations are done on the block dependency graph in order to obtain a smaller sized
graph. The details of the merge operations are described in the related subsection.

The block dependency graph and the number of CPU cores on the target architecture
are used in generating the MILP formulation presented in Section 4. Our tool takes
the MILP solver to be used as an input option and executes this solver with an upper
bound on solver execution time which again is taken from the user as an input option.
For the multi-rate models, the tool generates the block dependency graphs for every
distinct sample rate value. The block dependency graph for a sample rate contains the
blocks with the same sample rate and the data dependencies between these blocks.
Since the rate-transition blocks have one sample rate for their inputs and another
sample rate for their outputs, they are added to both sample rate graphs. The WCET
of the rate-transition blocks may be different for different sample rates. Here, the sam-
ple rate values can be supplied by the user or read from the properties of the blocks
in the input block diagram. When there are more than one sample rates, the problem
must be solved to satisfy the constraints for all tasks in a hyperperiod. For this pur-
pose, the hyperperiod is calculated as the least common multiple of the distinct sample
periods. During an hyperperiod, a task containing the blocks with a period will be re-
peated hyperperiod

period times. Starting time of each of these repetitions in the hyperperiod
is called a firing time. The tool calculates the firing times and determines the peri-
ods and the blocks corresponding to each firing time. The block dependency graphs for
the whole model and for the distinct period values together with the hyperperiod, the
firing times and the periods/blocks corresponding to the firing times are used in the
MILP formulation described in the Section 4. The MILP solver seeks a feasible map-
ping of blocks to the CPU cores satisfying the constraints and returns the mapping
found and execution start times for all executions of the blocks during the hyperpe-
riod. The MILP solver returns the solution for mapping blocks to the available CPU
cores and the execution order between these blocks, if a feasible solution is found. If
no feasible solution is found, MILP solver reports this and our tool as well reports this
to the user and exits.

The solution from the MILP solver is used to add inter-core communication blocks
between the blocks with the same period which are mapped on different CPU cores.
The relevant outputs of a block which are sending data to a block on a different core
are connected to inter-core data transmitting S-function blocks. Similarly, the corre-
sponding inter-core data receiving S-function blocks for each transmitter are connected
to the relevant inputs of the block which is receiving data on a different core. The
inter-core communication blocks are added by setting unique IDs that set each pair of
transmitting and receiving blocks to use a dedicated inter-core semaphore and a dedi-
cated shared memory location. For the multi-rate models, the inter-core rate-transition
blocks which are stated in the Section 3 are added between the different rate blocks
mapped on the different cores which have a data communication between each other.

An example of the transformation of block diagram for inter-core communication of
the same rate blocks is given in Figure 6. The output of B1 is connected to the input
of B2 in the original model. This connection is then replaced by the inter-core com-
munication blocks. After adding all needed communication blocks, we set the priority
attributes of the Simulink blocks using the execution start time values obtained from
the optimization solution. This is done in order to guarantee that, for every iteration in
the sampling process of the Simulink model, the total order of block execution induced
by Simulink is consistent with the partial order of the block dependency graph that we

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 C. E. Tuncali et al.

In Out In Out
B1 B2

In Out

In Out

B1

B2

Inter Core Sender : 2

Inter Core Sender System

Inter Core Receiver : 2

Inter Core Receiver System

Fig. 6. Inter-core communication blocks

create which imposes the MILP formulation constraints. Simulink Coder uses the pri-
ority attributes of the blocks, with respect to the other blocks in the same subsystem,
as an execution ordering which is reflected to the generated code as long as the priority
settings do not conflict with the data dependencies between the blocks. Because of this
behavior of the Simulink Coder, depending on the selected model depth for the par-
allelization, our tool may be implicitly suggesting a different structure for the model,
i.e, splitting subsystems into more than one subsystems, through execution ordering
of the blocks. While this can be automated, our tool does not change the structure of
the model automatically and leaves this to the control engineer.

As the final step, a copy of the model is created for every CPU core. Each copy of the
model corresponds to a CPU core and the blocks which are mapped on other cores are
commented out. Code generated from each of these models can be compiled to create
separate executables for each core. For the multi-rate models, Simulink generates sep-
arate functions for different sample periods. These functions are executed in different
tasks and these tasks are scheduled by the rate-monotonic scheduling algorithm on
the target platform as described in [Bulusu 2014].

6. EXPERIMENTS

For studying the scalability and efficiency of our approach for the single-rate models,
we utilize randomly generated directed acyclic graphs with different number of nodes.
We present results of these experiments in the subsection 6.1 and results of our case
studies for single-rate models in the subsection 6.3. We illustrate our approach for
multi-rate models with a simple example in the subsection 6.2. We use SCIP [Achter-
berg 2009] from Achterberg as MILP solver which is interfaced with MATLAB through
the Opti Toolbox [Currie and Wilson 2012] by Currie and Wilson. Experiments are run
on a 64-bit Windows 7 PC with Intel Xeon E5-2670 CPU and 64 GB RAM.

6.1. Randomly Generated DAGs

For evaluating performance of our approach for single-rate models, we generate ran-
dom DAGs in which the WCET, communication costs and connections between blocks
are assigned randomly. We used the random DAG generator tool provided by Gwinner
[2011]. Then we solve the Problem 1 for a dual-core system with the basic MILP formu-
lation which is given in Section 4 and with the partially and fully ordering heuristics
for deciding the execution order of independent blocks. We set five hours (18,000 sec)
as an acceptable upper time limit for the solver run time. We have done 500 runs
with different size and completely random DAGs for increasing the confidence level in
the benchmarks. Here, we present a comparison of the performance of these three ap-
proaches in terms of the average speed-up achieved, the average solver execution time
and the ability to find a solution in the given time limit. The speed-up is computed as
the overall single-core worst-case execution time of the model divided by the overall
worst-case execution time of the parallelized model.

Given infinite solver execution time, the basic MILP formulation is expected to find
more optimal solutions than the other approaches do for any problem size. However,
when the solver execution time is limited (5 hours in our experiments), it fails to find

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Automatic Parallelization of Multi-rate Simulink Control Models for Multi-core Architectures A:19

satisfactory solutions for large problems. Table II gives a comparison of the perfor-
mance of the used approaches. Average speed-up achieved by basic MILP formulation,
partially and fully ordering heuristics (respectively denoted as basic, partial and full)
and corresponding solver run-time values are presented in the table for different prob-
lem sizes. We also present the ratio of the solutions found over all the experiments.
For a problem size, the lines corresponding to the approaches which could not return
any solutions are discarded in the table. As it can be seen from the results presented
in Table II, as the number of blocks in a model increases, any heuristic that (partially)
sets the execution order performs better both in terms of solver run-time and opti-
mality of solutions. According to our observations, for finding an optimal mapping, the
basic MILP formulation performs best when there are less than 30 blocks. The par-
tially ordering heuristic performs best when there are 30 to 50 blocks. For more than
50 blocks in the model, the fully ordering heuristic outperforms other approaches in
terms of the achieved speed-up and the ability to return a solution. The basic MILP for-
mulation fails to return any solution for models with 70 or more blocks. The partially
ordering heuristic fails to return any solution for models with more than 110 blocks.
Although this detail is not illustrated in Table II because of averaging, according to
our experimental results, the fully ordering heuristic can occasionally achieve very
low speed-up values compared to the other approaches when there are less than 20
blocks in the model. However, this issue is not observed when there are large number
of blocks. This behavior is parallel to our expectations since optimization can signif-
icantly reduce the effect of possible non-optimal execution order decisions by trying
large number of different mapping of blocks to different cores.

In Figure 7, we illustrate the comparison between the two heuristics and the basic
MILP formulation in terms of the achieved speed-up over the number of nodes. The
solid lines in the plot represent how much average speed-up is achieved by each ap-
proach. The dashed lines represent the corresponding minimum and maximum speed-
up for each approach. For very small number of nodes, the basic MILP formulation is
better than the other approaches. However, when the number of nodes increases, first,
the partially ordering heuristic and, then, the fully ordering heuristic perform best.

In Figure 8, we illustrate the comparison between the two heuristics and the basic
MILP formulation in terms of the average solver execution time over the number of
nodes. Each line in the graph represents the average solver execution time spent for
each approach. As it is expected, due to the time limit given to the solver, as the num-
ber of nodes increases, the solution times for all approaches converge. However, the
experiments on models with less number of nodes suggests that the proposed heuris-
tics can shorten the solver execution time. In the graph it can be observed that the
average solver execution time for proposed heuristics (as a function of node count) is
smaller than the basic formulation. Combining the data in Figure 7 and Figure 8, we

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

10 - 15 30 40 50 60 70 80 90 100 110 130 150 170

Sp
ee

d-
up

Number of Nodes

Basic (Avg)
Partial (Avg)
Full (Avg)
Basic (Min)
Partial (Min)
Full (Min)
Basic (Max)
Partial (Max)
Full (Max)

Fig. 7. Comparison of speed-up values between different approaches

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 C. E. Tuncali et al.

Table II. Comparison of different approaches

Nodes Approach Average
speed-up

Average
solver time (seconds)

% found
Solutions

10-15
Basic 1.48 2 100%
Partial 1.47 1 100%
Full 1.46 0.5 100%

30
Basic 1.68 2620 100%
Partial 1.71 1558 100%
Full 1.46 26 100%

40
Basic 1.48 9256 100%
Partial 1.62 2091 100%
Full 1.55 606 100%

50
Basic 1.2 18000 100%
Partial 1.66 12481 100%
Full 1.67 5174 100%

60
Basic 1.09 18000 64%
Partial 1.55 17400 100%
Full 1.59 11685 100%

70 Partial 1.54 18000 100%
Full 1.75 18000 100%

80 Partial 1.39 18000 100%
Full 1.7 18000 100%

90 Partial 1.38 18000 60%
Full 1.61 18000 100%

100 Partial 1.08 18000 50%
Full 1.64 18000 100%

110 Partial 1.04 18000 30%
Full 1.67 18000 100%

130 Full 1.56 18000 100%
150 Full 1.62 18000 100%
170 Full 1.61 18000 100%

can see that the fully ordering heuristic returns better solutions within shorter solver
run-time compared to the other approaches.

6.2. An example on multi-rate models

We illustrate our approach for multi-rate models on a simple synthetic example. The
Figure 9 illustrates the block diagram of the sample model. We included WCET and
sampling period information for each block in the Figure 9. The notation for this in-
formation is in the format “block name, (WCET:sampling period)”. For instance the
block “A” has a WCET of 1 ms and a sampling period of 20 ms. In can be seen that
the blocks “A” to “G” have a sampling period of 20 ms while the blocks “H” to “Y” have

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

10 - 15 30 40 50 60 70 80 90 100 110 130 150 170

So
lv

er
 T

im
e

(s
)

Number of Nodes

Basic (Avg)
Partial (Avg)
Full (Avg)

Fig. 8. Comparison of solver execution time between different approaches

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Automatic Parallelization of Multi-rate Simulink Control Models for Multi-core Architectures A:21

1
A (1:20)

2
B (1:20)

In1 Out1

C (2:20)

In1 Out1

D (2:20)

In1
In2 Out1

E (2:20) In1
In2 Out1

F (2:20)

1
G (1:20)

In1
In2 Out1

K (7:80)
In1 Out1

J (5:80)

3
I (1:80)

In1 Out1

H (6:80)

In1 Out1

L (4:80)

ZOH

RT1 (1,1:20,80)

1/z

RT2 (1,1:80,20)

Out1

M (7:80)

In1 Out1

N (9:80)

In1
In2 Out1

P (5:80)

In1 Out1

O (7:80)

In1 Out1

Q (7:80)

In1
In2 Out1

R (5:80)

In1 Out1

S (5:80)

In1 Out1

T (6:80)

In1 Out1

U (7:80)

In1
In2 Out1

V (6:80)

2
Y (1:80)

Fig. 9. A multi-rate block diagram sample

a sampling period of 80 ms. The blocks “RT1” and “RT2” are Simulink built-in rate-
transition blocks which provide a mechanism for the data transfer between the blocks
of different rates. The rate-transition blocks will have their inputs and outputs execut-
ing on different sampling periods. In this example, “RT1” has a sampling period of 20
ms for its input and 80 ms for its output and “RT2”, has a sampling period of 80 ms
for its input and 20 ms for its output. For rate-transition blocks, we provide WCETs
for both sampling periods, separated by a comma respective to the order of sampling
periods. The inter-core communication costs are 8 µs for transmission and 8 µs for
reception for any data connection between the blocks.

The total WCET time is 13 ms for the blocks with the sampling period of 20 ms
including the executions of rate-transition blocks for this sampling period. The total
WCET for the blocks with the sampling period of 80 ms is 90 ms. This makes a task
generated from the blocks with period 80 ms not schedulable without seeking a feasible
partition of the blocks to multiple cores.

Our tool computes the hyperperiod as H = lcm(20, 80) = 80 ms. The firing times in
the hyperperiod are given as F = {0, 20, 40, 60} in milliseconds which are the multiples
of the sampling periods during the hyperperiod. Note that the firing time at 80 ms is
actually the beginning of the next iteration of the hyperperiod. Copies of the blocks
with the sampling period of 20 ms are fired at every firing time. The blocks with sam-
pling period of 80 ms are only fired at the beginning of the hyperperiod. Then, the block
dependency graphs for each rate are created. Figure 10 and Figure 11 give the block
dependency graphs for the sampling period of 20 ms and 80 ms respectively.

8 8

8
8

8

8

8

8

A B

C D

E

F

RT1RT2

G

Fig. 10. Block Dependency Graph for 20 ms

8

88

8
8

8
8

8

8

8

8

8 8

8

8

8

8

8

8

I

HJ

K

L

M

N

O
P

Q

R

RT1

RT2

S

T

U

V

Y

Fig. 11. Block Dependency Graph for 80 ms

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 C. E. Tuncali et al.

Core 1: A, B, C, D, E, F, G, RT1, RT2, J, P, R, ICSender(1,6,8,9), ICReceiver(0,2,3,4,5,7)
Core 2: I, H, K, L, M, N, O, Q, S, T, U, V, Y, ICSender(0,2,3,4,5,7), ICReceiver(1,6,8,9)

1
A

2
B

In1 Out1

C

In1 Out1

D

In1
In2 Out1

E In1
In2 Out1

F

1
G

In1
In2 Out1

K

In1 Out1

J

3
I

In1 Out1

H

In1 Out1

L

RT1
RT2

Out1

M

In1 Out1

N

In1
In2 Out1

P

In1 Out1

O

In1 Out1

Q

In1
In2 Out1

R
In1 Out1

S

In1 Out1

T

In1 Out1

U

In1
In2 Out1

V

2
Y

re Se
ICSender0 e Re

ICReceiver0
re Se

ICSender1

e Re
ICReceiver1

re Se
ICSender2

e Re
ICReceiver2

re Se
ICSender3

e Re
ICReceiver3

re Se
ICSender4

e Re
ICReceiver4

re Se
ICSender5

e Re
ICReceiver5

re Se
ICSender6

e Re
ICReceiver6

re Se
ICSender7

e Re
ICReceiver7

re Se
ICSender8

e Re
ICReceiver8

re Se
ICSender9

e Re
ICReceiver9

Fig. 12. Updated model for multi-core (contains blocks for both cores)

In the next step, our tool utilizes MILP solver to find a feasible mapping of the blocks.
Here we are targeting a dual-core architecture. The updated model with block-to-core
mapping is given in Figure 12. For any connection between different cores we add
an inter-core sender block to the sending core and an inter-core receiver block to the
receiving core. Because of space considerations, we cannot provide the figures of the
model for each core here. In brief, the copy of the model for each core has the blocks of
other core commented out. That is, in the generated model for Core 1, only the blocks
that are mapped to Core 1 are active while the others are commented out and vice
versa for Core 2. With this suggested mapping and computed ordering of the blocks,
all of the blocks can complete execution in their periods on a multi-core architecture.

The Figure 13 gives the core mapping of the blocks with the execution time infor-
mation in an hyperperiod. The horizontal lines illustrates the execution of each block.
The notation for the labels is (block name, execution copy in hyperperiod : sampling
time). For instance (RT1, 0 : 20) corresponds to the execution copy 0 of “RT1” block for
sampling period 20 ms. Note that copy counts start from 0 for the first execution. It
can be seen that the rate-transition blocks “RT1” and “RT2” executes for both sampling
periods. In the Figure 13, we can observe that at every firing time, first the blocks with
smaller sampling periods are executed first and after them, the blocks from larger sam-
pling periods are executed. For instance, in the first firing time 0 ms blocks with 20 ms
period are completed and “RT1” block for period 80 and block “J” start execution after
them and the blocks with 80 ms period complete before the next firing time. Note that
the execution information is based on worst-case execution times. An actual execution
on the target platform would have same execution ordering with possibly shorter exe-

0 10 20 30 40 50 60 70 80
Time (ms)

1

2

C
PU

 C
or

e

(A
, 0

 :
20

)

(B
, 0

 :
20

)

(C
, 0

 :
20

)

(D
, 0

 :
20

)

(E
, 0

 :
20

)

(F
, 0

 :
20

)

(R
T1

, 0
 :

20
)

(R
T2

, 0
 :

20
)

(G
, 0

 :
20

)

(I,
 0

 :
80

)

(H
, 0

 :
80

)

(J
, 0

 :
80

)

(K
, 0

 :
80

)

(L
, 0

 :
80

)

(M
, 0

 :
80

)

(N
, 0

 :
80

)

(O
, 0

 :
80

)

(P
, 0

 :
80

)

(Q
, 0

 :
80

)

(R
, 0

 :
80

)

(R
T1

, 0
 :

80
)

(R
T2

, 0
 :

80
)

(S
, 0

 :
80

)

(T
, 0

 :
80

)

(U
, 0

 :
80

)

(V
, 0

 :
80

)

(Y
, 0

 :
80

)

(A
, 1

 :
20

)

(B
, 1

 :
20

)

(C
, 1

 :
20

)

(D
, 1

 :
20

)

(E
, 1

 :
20

)

(F
, 1

 :
20

)

(R
T1

, 1
 :

20
)

(R
T2

, 1
 :

20
)

(G
, 1

 :
20

)

(A
, 2

 :
20

)

(B
, 2

 :
20

)

(C
, 2

 :
20

)

(D
, 2

 :
20

)

(E
, 2

 :
20

)

(F
, 2

 :
20

)

(R
T1

, 2
 :

20
)

(R
T2

, 2
 :

20
)

(G
, 2

 :
20

)

(A
, 3

 :
20

)

(B
, 3

 :
20

)

(C
, 3

 :
20

)

(D
, 3

 :
20

)

(E
, 3

 :
20

)

(F
, 3

 :
20

)

(R
T1

, 3
 :

20
)

(R
T2

, 3
 :

20
)

(G
, 3

 :
20

)

Fig. 13. CPU core mapping and execution information of blocks

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Automatic Parallelization of Multi-rate Simulink Control Models for Multi-core Architectures A:23

cution durations and earlier start times (since an actual execution time may be shorter
then the worst-case execution time).

6.3. Case Study: Toyota Diesel Engine Controller

We used the Diesel engine controller model from [Huang et al. 2013] as a single-rate
case study from industry. The original model contains both controller and plant parts.
The controller part of model has 1004 blocks when flattened as described in Section
5. It has 7 inputs that are multiplexed into a single input bus signal and 6 outputs
that are multiplexed into a single output bus signal. Since the model has cycles in-
side the subsystems, our tool flattens the model by searching all blocks inside virtual
subsystems, breaks the cycles as described in Section 5 and merges blocks inside sub-
systems (when possible) without introducing new cycles. For parallelizing this model
we set the target model depth as 2. The block dependency graph capturing a flattened
representation of the model up to the target model depth is generated. The generated
block dependency graph contains 153 nodes and a total of 184 connections between
these nodes. Our target platform for this case study is the dual-core architecture from
Freescale which is described in Section 3. In our target hardware setup we have a total
of 3.8 KB shared memory available.

For a model of this size, both the basic MILP formulation and the partially ordering
heuristic fail in finding a solution in 10 hours. However, by merging blocks of subsys-
tems with depth more than 2 and with our fully ordering heuristic, our tool returned a
solution to the given problem within an average of 1.2 hours of solver execution time.
Here the average is taken over different sets of worst-case execution time assignments.
The suggested multi-core mapping by the tool achieves a speed-up factor of 1.44 on av-
erage. This result is parallel with our expectations based on experiments carried on
randomly generated DAGs and illustrates applicability of our approach to reasonably
large problems in industry.

7. CONCLUSIONS

In this paper we presented our approach for parallelizing single-rate and multi-rate
Simulink models on multi-core architectures. We proposed a heuristic for partially de-
ciding execution order of independent blocks when they are mapped to the same core.
According to the experimental results for single-rate models with randomly generated
DAGs, the MILP solver returns better solutions with this proposed heuristic in a rea-
sonable limited solver execution time for models with around 50 to 60 blocks in our
experimental environment. For models with larger number of blocks, we proposed an-
other heuristic in which the execution order of all the independent blocks is decided in
advance. With this approach our tool could handle models with larger than 150 blocks.
We also presented this heuristic together with block merging methods on a single-rate
case study from the industry where our tool reduced 1004 blocks to 153 nodes on the
dependency graph by merging blocks deeper than a specified value and solved the prob-
lem on this 153 nodes. The results from the case study illustrate how our approach can
handle single-rate models which can contain more than 1000 blocks. The introduced
heuristics may not be as useful in multi-rate models. Because, these heuristics may
eliminate the opportunity to fit small blocks in the idle times of the schedule where no
higher priority task is executing.

For the future work, we consider extending this work by introducing heuristic meth-
ods for solving the optimization problem for the multi-rate models, studying models
with blocks that have priority assignments. In addition, available parallelization un-
der different triggering conditions should be further analyzed for the event-triggered
models to get more optimal results. For large models, in order to improve efficiency
of the heuristics, investigating control-flow level parallelization opportunities inside

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 C. E. Tuncali et al.

the models is another promising approach to be studied. Similar to the schedule gen-
eration approach proposed by Lee et al. [2012], a depth-first traversal on the block
dependency graph can be done to explore the model and merging of the blocks can be
done in a smarter way based on the parallel paths in the graph. Furthermore, we plan
to incorporate worst-case execution time (WCET) estimation tools in our framework.

REFERENCES

Karl J. Åström and Björn Wittenmark. 1997. Computer-controlled Systems (3rd Ed.). Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA.

Tobias Achterberg. 2009. SCIP: solving constraint integer programs. Mathematical Programming Computa-
tion 1, 1 (2009), 1–41.

Ahmad Al Sheikh, Olivier Brun, Pierre-Emmanuel Hladik, and Balakrishna J Prabhu. 2012. Strictly peri-
odic scheduling in IMA-based architectures. Real-Time Systems 48, 4 (2012), 359–386.

AUTOSAR. 2015. AUTOSAR Specification. (2015). http://www.autosar.org
Sanjoy Baruah. 2015. The Federated Scheduling of Systems of Conditional Sporadic DAG Tasks. In Pro-

ceedings of the 12th International Conference on Embedded Software (EMSOFT ’15). IEEE Press, Pis-
cataway, NJ, USA, 1–10. http://dl.acm.org/citation.cfm?id=2830865.2830866

Armin Bender. 1996. Design of an optimal loosely coupled heterogeneous multiprocessor system. In Euro-
pean Design and Test Conference, 1996. ED&TC 96. Proceedings. IEEE, 275–281.

Girish Rao Bulusu. 2014. Asymmetric Multiprocessing Real Time Operating System on Multicore Platforms.
Master’s thesis. Arizona State University.

Arquimedes Canedo, Takeo Yoshizawa, and Hideaki Komatsu. 2010. Automatic parallelization of simulink
applications. In Proceedings of the 8th annual IEEE/ACM international symposium on Code generation
and optimization. ACM, 151–159.

Certification Authorities Software Team. 2014. Position Paper CAST-32 Multi-core processors. Technical
Report. Federal Aviation Administration.

Minji Cha, Kyong Hoon Kim, Chung Jae Lee, Dojun Ha, and Byoung Soo Kim. 2011. Deriving high-
performance real-time multicore systems based on simulink applications. In Dependable, Autonomic
and Secure Computing (DASC), 2011 IEEE Ninth International Conference on. IEEE, 267–274.

Jing Chen and Alan Burns. 1997. A three-slot asynchronous reader/writer mechanism for multiprocessor
real-time systems. Report-University of York Department of Computer Science YCS (1997).

Scott Cotton, Oded Maler, Julien Legriel, and Selma Saidi. 2011. Multi-criteria optimization for mapping
programs to multi-processors. In Industrial Embedded Systems (SIES), 2011 6th IEEE International
Symposium on. IEEE, 9–17.

Jonathan Currie and David I Wilson. 2012. OPTI: lowering the barrier between open source optimizers and
the industrial MATLAB user. Foundations of computer-aided process operations, Savannah, Georgia,
USA (2012), 8–11.

Robert I Davis and Alan Burns. 2011. A survey of hard real-time scheduling for multiprocessor systems.
ACM Computing Surveys (CSUR) 43, 4 (2011), 35.

Peng Deng, Fabio Cremona, Qi Zhu, Marco Di Natale, and Haibo Zeng. 2015. A model-based synthesis flow
for automotive CPS. In Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical
Systems. ACM, 198–207.

EASA. 2012. EASA/2011/6 Final Report. Technical Report. European Aviation Safety Agency.
Johan Eker, Jörn W Janneck, Edward Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig, Stephen Neuendorffer, Sonia

Sachs, Yuhong Xiong, and others. 2003. Taming heterogeneity-the Ptolemy approach. Proc. IEEE 91, 1
(2003), 127–144.

Ahmed Elhossini, John Huissman, Basil Debowski, Shawki Areibi, and Robert Dony. 2010. An efficient
scheduling methodology for heterogeneous multi-core processor systems. In Microelectronics (ICM),
2010 International Conference on. IEEE, 475–478.

Esterel Technologies. 2015. SCADE Suite. (2015). http://www.esterel-technologies.com/
Juraj Feljan and Jan Carlson. 2014. Task Allocation Optimization for Multicore Embedded Systems. In Soft-

ware Engineering and Advanced Applications (SEAA), 2014 40th EUROMICRO Conference on. IEEE,
237–244.

Julien Forget, Frédéric Boniol, David Lesens, and Claire Pagetti. 2010. A Real-Time Architecture Design
Language for Multi-Rate Embedded Control Systems. In 25th ACM Symposium On Applied Computing.
Sierre, Switzerland, 527–534. https://hal.archives-ouvertes.fr/hal-00688490

Freescale Semiconductor Inc. 2015. Qorivva MPC5675K. (2015). http://www.freescale.com/

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Automatic Parallelization of Multi-rate Simulink Control Models for Multi-core Architectures A:25

Raul Gorcitz, Emilien Kofman, Thomas Carle, Dumitru Potop-Butucaru, and Robert De Simone. 2015. On
the Scalability of Constraint Solving for Static/Off-Line Real-Time Scheduling. In Formal Modeling and
Analysis of Timed Systems. Springer, 108–123.

Ronald L. Graham. 1969. Bounds on multiprocessing timing anomalies. SIAM journal on Applied Mathe-
matics 17, 2 (1969), 416–429.

Frederik Gwinner. 2011. Transitive reduction of a DAG v1.2. (2011). http://www.mathworks.com/
matlabcentral/fileexchange/32723-transitive-reduction-of-a-dag

Pierre-Emmanuel Hladik, Hadrien Cambazard, Anne-Marie Déplanche, and Narendra Jussien. 2008. Solv-
ing a real-time allocation problem with constraint programming. Journal of Systems and Software 81,
1 (2008), 132–149.

Meng Huang, Hidemoto Nakada, Srinivas Polavarapu, Richard Choroszucha, Ken Butts, and Ilya Kol-
manovsky. 2013. Towards combining nonlinear and predictive control of diesel engines. In American
Control Conference (ACC), 2013. IEEE, 2846–2853.

Raimund Kirner, Roland Lang, Peter Puschner, and Christopher Temple. 2000. Integrating WCET analysis
into a Matlab/Simulink simulation model. In Proceedings of the 16th IFAC Workshop on Distributed
Computer Control Systems. 79–84.

Takahiro Kumura, Yuichi Nakamura, Nagisa Ishiura, Yoshinori Takeuchi, and Masaharu Imai. 2012. Model
based parallelization from the simulink models and their sequential C code. In Proceedings of the 17th
Workshop on Synthesis And System Integration of Mixed Information Technologies (SASIMI 2012). 186–
191.

Haeseung Lee, Weijia Che, and Karam Chatha. 2012. Dynamic scheduling of stream programs on embed-
ded multi-core processors. In Proceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis. ACM, 93–102.

Roberto Lublinerman, Christian Szegedy, and Stavros Tripakis. 2009. Modular Code Generation from
Synchronous Block Diagrams: Modularity vs. Code Size. SIGPLAN Not. 44, 1 (Jan. 2009), 78–89.
DOI:http://dx.doi.org/10.1145/1594834.1480893

Roberto Lublinerman and Stavros Tripakis. 2008. Modular code generation from triggered and timed block
diagrams. In Real-Time and Embedded Technology and Applications Symposium, 2008. RTAS’08. IEEE.
IEEE, 147–158.

Micrium Inc. 2015. µC/OS-II. (2015). http://micrium.com/rtos/ucosii/
Chris Ostler and Karam S Chatha. 2007. An ILP formulation for system-level application mapping on net-

work processor architectures. In Proceedings of the conference on Design, automation and test in Europe.
EDA Consortium, 99–104.

Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard, and Pierre Siron. 2014. The ROSACE case
study: From Simulink specification to multi/many-core execution. In Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), 2014 IEEE 20th. IEEE, 309–318.

Wolfgang Puffitsch, Eric Noulard, and Claire Pagetti. 2015. Off-line mapping of multi-rate dependent task
sets to many-core platforms. Real-Time Systems 51, 5 (2015), 526–565.

Pranav Tendulkar, Peter Poplavko, Ioannis Galanommatis, and Oded Maler. 2014. Many-core scheduling
of data parallel applications using SMT solvers. In Digital System Design (DSD), 2014 17th Euromicro
Conference on. IEEE, 615–622.

The MathWorks Inc. 2015. Simulink version 8.5 (R2015a). (2015). http://www.mathworks.com/
Lothar Thiele and Pratyush Kumar. 2015. Can real-time systems be chaotic?. In Proceedings of the 12th

International Conference on Embedded Software. IEEE Press, 21–30.
Cumhur Erkan Tuncali, Georgios Fainekos, and Yann-Hang Lee. 2015. Automatic Parallelization of

Simulink Models for Multi-core Architectures. In High Performance Computing and Communications
(HPCC), 2015 IEEE 7th International Symposium on Cyberspace Safety and Security (CSS), 2015 IEEE
12th International Conferen on Embedded Software and Systems (ICESS), 2015 IEEE 17th Interna-
tional Conference on. IEEE, 964–971.

Dan Umeda, Takahiro Suzuki, Hiroki Mikami, Keiji Kimura, and Hironori Kasahara. 2015. Multigrain
Parallelization for Model-based Design Applications Using the OSCAR Compiler. In Proceedings of the
28th International Workshop on Languages and Compilers for Parallel Computing. 151–165.

Ying Yi, Wei Han, Xin Zhao, Ahmet T Erdogan, and Tughrul Arslan. 2009. An ILP formulation for task map-
ping and scheduling on multi-core architectures. In Design, Automation & Test in Europe Conference &
Exhibition, 2009. DATE’09. IEEE, 33–38.

Received October 2015; revised ; accepted

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

