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Abstract— This paper addresses the problem of parallelizing
existing single-rate Simulink models for embedded control appli-
cations on multi-core architectures considering communication
cost between blocks on different CPU cores. Utilizing the block
diagram of the Simulink model, we derive the dependency graph
between the different blocks. In order to solve the scheduling
problem, we describe a Mixed Integer Linear Programming
(MILP) formulation for optimally mapping the Simulink blocks
to different CPU cores. Since the number of variables and
constraints for MILP solver grows exponentially when model
size increases, solving this problem in a reasonable time becomes
harder. For addressing this issue, we introduce a set of techniques
for reducing the number of constraints in the MILP formulation.
By using the proposed techniques, the MILP solver finds solutions
that are closer to the optimal solution within a given time
bound. We study the scalability and efficiency of our consisting
approach with synthetic benchmarks of randomly generated di-
rected acyclic graphs. We also use the Fault-Tolerant Fuel Control
System demo from Simulink and a Diesel engine controller from
Toyota as case studies for demonstrating applicability of our
approach to real world problems.

Keywords—Multiprocessing, embedded systems, optimization,
model based development, Simulink, task allocation.

I. INTRODUCTION

Model Based Development (MBD) has gained a lot of
traction in the industries that develop safety critical systems.
This is particularly true for industries that develop Cyber-
Physical Systems (CPS) where the software implements con-
trol algorithms for the physical system. Using MBD, system
developers and control engineers can design the control al-
gorithms on high-fidelity models. Most importantly, they can
test and verify the system properties before having a prototype
of the system. The autocode generation facility of MBD tools
provides additional concrete benefit which helps in eliminating
programming errors.

However, currently, the autocode generation process of
commercial tools focuses on single-core systems. Namely, at
the model level, there is no automatic support for producing
code that runs on a multi-core system. This is problematic
since advanced control algorithms, e.g., Model Predictive
Control algorithms [1], are computationally demanding and
may not be executed within the limited computation budget of
a single-core embedded system. In this paper, we address this
problem at the model level. Namely, given a data flow diagram
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of an embedded control algorithm, the worst case execution
times of the blocks and a computation budget (deadline), can
we automatically partition the blocks onto the different cores
so that the real-time constraints are satisfied?

In particular, we focus on control models built in the
Simulink [2] MBD environment. Our goal is to produce a
framework where non-determinism in the control algorithm
is reduced or minimized to the extent possible. Especially
in safety-critical systems, scheduling in a predictable and
deterministic manner is highly important for verification and
satisfying the certification requirements that are mandated by
regulatory authorities. For example, multi-core architectures
are classified as highly complex in the 2011/6 final report
of European Aviation Safety Agency (EASA) [3] and in the
Certification Authorities Software Team position paper CAST-
32 Multi-core processors [4]. These classifications highlight
the difficulty of certifying safety-critical systems that are based
on multi-core architectures.

Our approach is based on keeping timing properties of
parallelized software as simple as possible. For this purpose,
we are aiming at having separate executables for each core
while Simulink blocks are allocated in each core and executed
in a predetermined order. In other words, we set the priorities
of each block inside each core.

The contributions of this paper are,

• providing a practical solution to the Simulink model
parallelization problem,

• improving available Mixed Integer Linear Program
(MILP) formulations in the literature for finding better
solutions within a fixed and practically feasible time
for industrial size models,

• solving the multi-core mapping problem while con-
sidering the timing predictability of the parallelized
application for ease of verification and certification,
and

• developing a toolbox for automating parallelization of
Simulink models to multi-core architectures.

II. RELATED WORK

There is a large amount of research being done on the
optimization of scheduling multiple tasks on multi-core pro-
cessors or multiple processors in the literature. In [5] Anderson



et al. propose a Pfair [6] based scheduling method for real-
time scheduling on multi-core platforms where the system
has multiple tasks and task migration is allowed. For optimal
mapping of tasks to CPU cores, Yi et al. [7], Bender [8] and
Ostler et al. [9] discuss integer linear programming techniques
which constitute a base for our optimization formulation.
Cotton et al. discuss the use of mapping programs to multi
processors in [10]. Tendulkar et al. discuss the application
of SMT solvers in many-core scheduling for data parallel
applications in [11]. In [12], Feljan et al. propose heuristics
for finding a good solution for task allocation problems in a
short time instead of searching for an optimal solution.

There are studies focusing on parallelization of Simulink
models. In [13], Kumura et al. propose methods to flatten
Simulink models for parallelization without giving a detailed
description of the optimization formulation. In that work,
Simulink blocks are considered as tasks. To achieve thread
level parallelism in multi-core, Canedo et al. introduce the
concepts of strands for breaking the data dependencies in
the model. A strand is defined as a chain of blocks that are
driven by Mealy blocks [14]. The proposed method searches
for available strand split points in Simulink models and it is
heavily relying on strand characteristics in target models. In
[15], Cha et al. is focusing on automating code generation for
multi-core systems where the parallel blocks are grouped by
user-defined parallelization start and end S-functions into the
model.

There are studies on task parallelization as [9], [7], [8].
However, to apply the similar approaches, Simulink blocks
must be considered as tasks. Given that most realistic models
may consist of a significant number of blocks, either these
methods fail to find an optimal solution in a reasonable
amount of time or they rely on available loop level parallelism
or functional pipelining as described in [9]. Deng et al.
study model-based synthesis flow from Simulink models to
AUTOSAR runnables [16] and runnables to tasks on multi-
core architectures in [17]. The authors extend the Firing
Time Automation (FTA) [18] model to specify activations
and requested execution time at activation points. They define
modularity as a measure of number of generated runnables and
reusability as a measure of false dependencies introduced by
runnable generation. The authors use modularity, reusability
and schedulability metrics for evaluation of runnable gener-
ations. They also propose different heuristics and compare
their results with the results obtained by utilizing a simulated
annealing algorithm. Although this work is targeting a similar
problem to our target problem, they are providing experiment
results for systems with less than 50 blocks and they are not
considering inter-core communication and memory overhead.

Our work mainly differs from the other works in literature
by

1. providing a complete flow for automatically paralleliz-
ing a single-rate Simulink model,

2. incorporating the communication cost in the optimiza-
tion problem,

3. having total available shared memory constraints, and

4. being able to handle large models with more than 100
blocks in a reasonably short time.

III. PROBLEM DESCRIPTION

We are addressing the problem of automatically paralleliz-
ing existing Simulink models for embedded control applica-
tions on multi-core architectures in an optimal way and in a
reasonable time.

We are focusing on single-rate, single-task embedded
control applications which are modeled in Simulink and in
which the execution order of blocks is determined only by
dependencies coming from connections between blocks. Our
target models cannot start execution of next iteration before
finishing the execution of the current iteration.

Our target platform is Qorivva MPC5675K-based evalu-
ation board [19]. The processor is a dual-core 32-bit MCU
from Freescale targeting automotive applications. The µC/OS-
II from Micrium [20] is ported on the target and a library to
support Simulink code generation is devised for the platform
[21]. We handle inter-core data communications by utilizing
available shared memory and inter-core semaphores which
are used for synchronization between tasks across cores and
protecting global critical sections as described by Bulusu in
[21]. For the purpose of utilizing this approach in Simulink,
we model transmission and reception of data between differ-
ent cores with two separate S-function blocks which imple-
ment inter-core transmission and reception using inter-core
semaphores and shared memory. We will refer to these S-
function blocks as inter-core communication blocks.

A. Solution Overview

We approach the problem in five steps which are illustrated
in Fig. 1. First, creating a directed acyclic graph which
represents dependencies between blocks. Task-data graphs are
discussed in [9]. We use a similar approach using blocks
instead of tasks, worst case execution times of blocks instead
of amount of work associated with tasks and using size
of data communication between blocks. Here we will refer
to this kind of graphs as “block dependency graphs”. Our
second step in approaching the problem is finding an optimal
or near optimal mapping of blocks to different CPU cores
by formulating a Mixed-Integer Linear Program (MILP) and
solving the resulting optimization problem with off-the-shelf
MILP solvers. The third step is automatically updating the
original Simulink model by adding inter-core communication
blocks where necessary in accordance with the most optimal
solution. The next step is generating separate code for each
target core by automatically commenting out the blocks that
are not mapped to the core for which code is being generated.
Finally, we compile the generated code and deploy it on the
target platform.

IV. MILP FORMULATION

In this section we present our MILP formulation for the
parallelization problem. Our MILP formulation for optimal
solution is based on the formulations proposed by [7], [8]
and [9]. We introduce an extension to these formulations by
dividing the cost of communication to the transmission and
reception parts. In Subsection D, we describe our techniques
for reducing the number of constraints for allowing the MILP
solvers to find better solutions within a feasible time.



Step 1
•Reading Model Block Information

•Creating Block Dependency Graph

Step 2
• Formulating and solving Mixed Integer Linear 

Programming problem for finding optimal mapping

Step 3
•Updating Simulink model for each core according 

to the solution found by MILP solver

Step 4
• Simulink code generation for each core

Step5
•Compilation and deployment onto target platform

Fig. 1. Steps of going from a single-core Simulink model to multi-core target

A. Notation and Constants

The number of CPU cores available at the target architec-
ture is denoted by m. The set of CPU cores is defined as P =
{Pp : p ∈ [1,m]}. The number of nodes in the dependency
graph is denoted by n where each node corresponds to a block
in the flattened and merged Simulink model. Merging of blocks
is done on the flattened model as described in subsection D.
We describe the dependencies between blocks with the block
dependency graph. This is a directed acyclic graph G = (B,
E), where B = {B1, B2, , Bn} is the set of nodes and E is the
set of edges in G. Each node Bi corresponds to a Simulink
block with a worst case execution time wi and each edge Eik

represents a data dependency from block Bi to block Bk. The
set of leaf nodes in B, i.e., set of blocks which do not have
any output ports is denoted by L and the set of start blocks,
i.e., the set of blocks which do not have any input ports is
denoted by S. We use Z for the set of deleted connections from
the blocks that introduce delays (e.g., Unit Delay, Memory,
Integrator, etc) to successor blocks. These connections exist
in the original model, but they are deleted when forming the
directed acyclic graph for removing cycles from the model.
Such a connection is represented by Zik ∈ Z.

The size of the data transfer from block Bi to Bk in bytes
is defined as cik. When Bi and Bk are mapped on different
cores there will be a communication cost for transferring cik
bytes of data between the cores. The communication cost is
divided into transmission and receiving parts where tik denotes
the transmission part of the communication time for sending
cik bytes of data from block Bi to block Bk when they are
mapped on different cores and rik denotes the receiving part
of the communication time for sending cik bytes of data from
block Bi to block Bk when they are on different cores.

The maximum allowed execution time for one iteration of
the model on the target multi-core architecture is given by the
deadline. It is either taken as a user input or calculated as the
overall worst case execution time on a single-core architecture.
The size of a global semaphore structure in bytes is denoted
by sSize and the size of total available shared memory in
bytes is defined as totMem. Data alignment size in bytes
(word size) is denoted by aSize. A very large value (MAX)

is used in the program formulation to dominate other terms
allowing constraints to be ignored under certain conditions.

B. Variables

bip: A Boolean variable indicating whether block Bi is
mapped to core Pp or not. It is defined for all Bi ∈ B and for
all Pp ∈ P . If Bi is mapped to core Pp, then bip takes value
1. If Bi is mapped to another core, then bip will takes value
0.

dik: A Boolean variable indicating whether block Bi

executes before or after Bk when both blocks are mapped to
same core. It is defined for all Bi, Bk ∈ B with i < k. If Bi

executes before Bk, then dik takes value 1 and if Bi executes
after Bk, then dik takes value 0.

si: The start time for the execution of block Bi. It is defined
for all Bi ∈ B. The lower bound for the variable si (best case
start time) is denoted by bsi. It is determined by the best case
completion time for all of the blocks from which there is a
path to Bi in G. In the best case, all of this workload before
Bi is distributed equally on all of the cores. The best case
start time of Bi is calculated as

(∑
k∈Ki

wk

)
/m where Ki =

{Bk : Bk ∈ B ∧ there exists a path from Bk to Bi in G}.
The upper bound for the variable si (worst case start time)
is denoted by wsi. It is determined by the best case com-
pletion time for all of the blocks to which there is a path
from Bi in G and the block Bi itself, subtracted from the
deadline. The worst case start time of Bi is calculated as
deadline −

(
wi +

∑
k∈Yi

wk

)
/m where Yi = {Bk : Bk ∈

B ∧ there exists a path from Bi to Bk in G}. For all i, k
such that Bi, Bk ∈ B and for all p such that Pp ∈ P .

f : The completion time after executing all blocks. The
lower bound for variable f is 0 and the upper bound is the
deadline.

C. Objective Function and Constraints

The objective function for the optimization problem is min-
imizing f while the constraints for the optimization problem
are defined as follows:

1) Every block shall be assigned to a single core:

∀i : Bi ∈ B,
∑
Pp∈P

bip = 1 (1)

2) Delay introducing blocks and their first successor blocks
shall be assigned to the same core:

∀i, k : Zik ∈ Z and ∀p : Pp ∈ P, bip − bkp = 0 (2)

3) The finishing time of each leaf block shall be less than
or equal to the completion time for executing all blocks: This
constraint is serving for the purpose of being able to formulate
the objective function minimize(maxBi∈L(si + wi))) as
minimize(f).

∀i : Bi ∈ L, si + wi ≤ f (3)



4) If there is a dependency from block Bi to Bk, block Bk

shall not start execution until (i) Bi finishes execution and
transmission of its output data to its successor blocks that are
mapped on other cores (which we temporarily define as fi
below) and (ii) Bk finishes receiving all of its input data that
are sent by the blocks on other cores: Considering that Bi is
mapped to core Pp and Bk is mapped to core Pq where p can
be equal to q:

∀i, k : Bi, Bk ∈ B, Eik ∈ E, ∀p, q : Pp, Pq ∈ P,

fi ≤ sk −
∑
Bl∈B

[rlk(1− blq)] + (2− bip − bkq)MAX (4)

where fi = si + wi +
∑

Bl∈B [til(1− blp)].

5) Execution of independent blocks that are mapped to
same core cannot overlap: Considering Bi and Bk are mapped
to core Pp, we have two different constraints for this require-
ment.

∀i, k : i < k, Bi, Bk ∈ B, Eik /∈ E, ∀p : Pp ∈ P,

fi ≤ sk −
∑
Bl∈B

[rlk(1− blp)] + (3− bip − bkp − dik)MAX

(5)

fk ≤ si −
∑
Bl∈B

[rli(1− blp)] + (2− bip − bkp + dik)MAX

(6)

Where, fi = si + wi +
∑

Bl∈B
[til(1− blp)]

and fk = sk + wk +
∑

Bl∈B
[tkl(1− blp)]

Since MAX is a very large constant, (5) will be valid when
block Bi executes before Bk i.e., when dik = 1 and (6) will
be valid when block Bi executes after Bk i.e., when dik = 0.

6) Total memory needed for semaphores and communica-
tion buffers shall be less than or equal to total amount of
available shared memory:

∀i, k : Bi, Bk ∈ B, Eik ∈ E, ∀p : Pp ∈ P

∑
Bi,Bk∈B

[(
sSize+

⌈ Cik

aSize

⌉
·aSize

)
·|bip−bkp|

]
< totMem

(7)

D. Improving Solver Time

The number of variables and constraints in the MILP
formulation grows exponentially as the number of blocks in the
model increase. Consequently, the MILP solver starts failing
in finding optimal or near optimal solutions for the problem in
a reasonable time. In this section, we introduce our techniques
for addressing this issue.

We say two blocks are dependent to each other if there
exists a directed path between corresponding nodes in the DAG
representation of the model and we say that two blocks are
independent if there is no directed path between these nodes.

1) Partially ordering independent blocks: In order to re-
duce the execution time of a model by parallelization, the
model must preferably have a large number of blocks that
are independent to each other. If all blocks are dependent to
each other, then there can be no multi-core mapping that will
improve the execution time and, thus, the best solution will be
mapping all blocks to the same core.

Typically, in an industrial size model with a large number
of blocks, both the number of blocks that are independent to
each other and the number of blocks that are dependent to each
other becomes large. In this case, when we consider all possi-
ble combinations of execution orders (priorities) between these
independent blocks, the number of constraints introduced by
inequalities (5) and (6) becomes very large. As a consequence,
finding an optimal solution within a feasible time becomes
harder.

We address this problem by deciding the execution order
between certain independent blocks in advance. That is, before
formulating the optimization problem, we decide the values of
the dik variables for these block pairs. Since our execution
order decision is valid only when these blocks are mapped
onto the same core, this should not prevent these blocks to
be mapped on different cores and, hence, be executed in a
different order than what we specify.

Our partially ordering heuristic is based on comparing
the execution start time frames of independent blocks. The
execution start time frame of a block is defined as the time
frame between its best and worst case start time values.
The best and the worst case start time values of a block
Bi ∈ B are defined in the subsection IV-B as bsi and wsi
respectively. For all independent block pairs Bi ∈ B and
Bk ∈ B, if

(
(bs(i) ≤ bs(k)) ∧ (ws(i) < ws(k))

)
∨
(
(bs(i) <

bs(k)) ∧ (ws(i) ≤ ws(k))
)

then we decide Bi to execute
before Bk and set dik to 1. Else if

(
(bs(i) ≥ bs(k))∧(ws(i) >

ws(k))
)
∨
(
(bs(i) > bs(k))∧(ws(i) ≥ ws(k))

)
then we decide

Bi to execute after Bk and set dik to 0.

2) Fully ordering independent blocks: Even though order-
ing independent blocks using the partially ordering heuristic
improves the performance, this is not enough for models with
very large number of blocks. For example we could not find
a feasible solution to models with more than 100 blocks with
this approach. For dealing with those large models we propose
deciding the execution order of all the independent blocks
when they are mapped on the same core. The logic in fully
ordering heuristic is based on comparing the midpoints of the
execution start time frames for these blocks. For independent
blocks Bi ∈ B and Bk ∈ B we decide Bi to be executed
before Bk if the average of bsi and wsi is smaller than the
average of bsk and wsk. With this approach, dik variables of
MILP formulation change to constant values. Our discussion
on the case when these blocks are mapped to different cores
in previous subsection is still valid.

3) Merging highly coupled blocks: In this heuristic we
merge blocks Bi and Bk when block Bk is the only block
connected to the output port(s) of block Bi and block Bi is
the only block connected to the input port(s) of block Bk. The
merging operation copies all incoming and outgoing edges of
Bk to Bi except the edge Eik. Then it updates wi with wi+wk

and finally deletes Bk.



4) Merging small blocks with large blocks: In this heuristic
we merge blocks Bi and Bk based on their ratio of execution
times. If block Bk is the only block connected to the output
port(s) of block Bi and the WCET of block Bi is very small
when compared to the WCET of block Bk, then block Bi is
merged into block Bk. If block Bi is the only block connected
to the output port(s) of block Bk and the WCET of block
Bk is very small when compared to the WCET of block
Bi, then block Bk is merged into block Bi. We find this
technique useful for reducing the number of blocks of concern
in a way that parallelization will be focused on blocks with
higher impact on execution time. The ratio between the worst
case execution times of the blocks for determining a merge
operation can be defined depending on how much reduction is
needed in the number of blocks.

The merging methods described above can be used for
decreasing the number of nodes in very large models where
the MILP solver can no more find a good solution. These two
techniques are also dependent on the structure of the model.
Although, in general, they assist in finding better solutions,
there can be cases where the number of nodes cannot be
reduced to an acceptable level.

V. IMPLEMENTATION

In this section we describe the details of the implementation
of our tool in MATLAB.

Our tool accepts as an input a Simulink model that is
ready to compile as well as the desired depth of blocks
to be parallelized. It loads the model, reads specific block
information, e.g., block type, parents, etc., and all the relations
between blocks along with the width and size of the data on
the ports. For data types that are not built-in, the user input is
required to define the data size in bytes. Using this information
the model is flattened by taking blocks inside sub-systems
out of their parent blocks. The remaining blocks like input
and output ports of subsystems, emptied subsystem container
blocks and ‘Goto’ - ‘From’ pairs, which are converted to line
connections, are discarded from the set of blocks.

We represent all these dependencies in a directed graph
where a directed edge represents a data communication from
its source to its destination. Since determining Worst Case
Execution Times (WCET) is not in scope of this paper, we
assume that the WCET values for each of the blocks are
already determined. If there exists a cycle in the directed
graph, this means that there is a corresponding block in
the cycle which creates a data dependency from a previous
iteration of model execution. We will refer to these blocks
as delay introducing blocks. In these cases we break the
connection from delay introducing blocks to their successors
for transforming a directed graph to a directed acyclic graph.
Since the connection from delay introducing blocks to their
successor blocks are deleted, our MILP solution can never
introduce inter-core communication mechanism between these
blocks even if they are mapped on different cores. For dealing
with this issue we force the delay introducing blocks and their
successor blocks to be mapped on the same core in the MILP
formulation.

After all of the cycles are cleared, the blocks that are
originally inside subsystems up to the desired model depth are

merged together without introducing cycles between blocks.
An exception to this is a subsystem including a delay intro-
ducing block. In this case, the blocks inside such a subsystem
are not merged into a single block since this can cause a cycle
in the dependency graph. In such a subsystem, predecessor
blocks of a delay introducing block are only merged with other
predecessor blocks and successor blocks are only merged with
other successor blocks. In other words, a predecessor and a
successor of a delay introducing block are never merged. The
flow of the process up to this point is illustrated in the simple
model in Fig. 2. In the next step, the block dependency graph is
annotated with estimates of WCET. Fig. 4 gives an illustration
of a simple block dependency graph.

The block dependency graph and the number of CPU cores
on the target architecture are used in generating the MILP
formulation presented in Section IV. The MILP solver returns
the best solution found for mapping blocks to the available
CPU cores and the execution order between these blocks.

The solution from the MILP solver is used to add inter-core
communication blocks between the blocks which are mapped
on different CPU cores. The relevant outputs of a block which
are sending data to a block on a different core are connected
to inter-core data transmitting S-function blocks. Similarly,
corresponding inter-core data receiving S-function blocks for
each transmitter are connected to the relevant inputs of the
block which is receiving data on a different core. The inter-
core communication blocks are added by setting unique IDs
that set each pair of transmitting and receiving blocks to use a
dedicated inter-core semaphore and a dedicated shared memory
location.

An example of the transformation is given in Fig. 3. The
output of B1 is connected to the input of B2 in the original
model. This connection is then replaced by inter-core com-
munication blocks. After adding all needed communication
blocks, we set the priority attributes of the blocks using the
execution start time values obtained from the optimization
solution.

As the last step, a copy of the model is created for every
CPU core. Each copy of the model corresponds to a CPU
core and the blocks which are mapped on other cores are
commented out. Code generated from each of these models
can be compiled to create separate executables for each core.

VI. EXPERIMENTS

For studying the scalability and efficiency of our approach,
we utilize randomly generated directed acyclic graphs with
different number of nodes. We present results of these experi-
ments in subsection VI-A and results of our case studies in sub-
sections VI-B and VI-C. We use SCIP [22] from Achterberg
as MILP solver which is interfaced with MATLAB through
the Opti Toolbox [23] by Currie and Wilson. Experiments are
run on a 64-bit Windows 7 PC with Intel Xeon E5-2670 CPU
and 64 GB RAM.

A. Randomly Generated DAGs

For evaluating performance of our approach, we generate
DAGs in which the WCET, communication costs and connec-
tions between blocks are assigned randomly. Then we solve
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Fig. 2. Flattening models and merging blocks

the problem for a dual-core system with the basic MILP
formulation which is given in Section IV and with the partially
and fully ordering heuristics for deciding the execution order
of independent blocks. We set five hours (18,000 sec) as an
acceptable upper time limit for the solver run time. Here,
we present a comparison of the performance of these three
approaches in terms of the average speed-up achieved, the
average solver time and the ability to find a solution in the
given time limit. The speed-up is computed as the overall
single-core worst case execution time of the model divided
by the overall worst case execution time of the parallelized
model.

Given infinite solver time, the basic MILP formulation
is expected to find more optimal solutions than the other
approaches do for any problem size. However, when the solver
time is limited (5 hours in our experiments), it fails to find sat-
isfactory solutions for large problems. Table I gives a compari-
son of the performance of the used approaches. Average speed-
up achieved by basic MILP formulation, partially and fully
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Fig. 3. Inter-core communication blocks
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Fig. 4. Block dependency graph for a simple model

ordering heuristics (respectively denoted as basic, partial and
full) and corresponding solver run-time values are presented in
the table for different problem sizes. We also present the ratio
of the solutions found over all the experiments. For a problem
size, the lines corresponding to the approaches which could
not return any solutions are discarded in the table. As it can
be seen from the results presented in Table I, as the number
of blocks in a model increases, any heuristic that (partially)
sets the execution order performs better both in terms of
solver run-time and optimality of solutions. According to our
observations, for finding an optimal mapping, the basic MILP
formulation performs best when there are less than 30 blocks.
The partially ordering heuristic performs best when there are
30 to 50 blocks. For more than 50 blocks in the model, the
fully ordering heuristic outperforms other approaches in terms
of the achieved speed-up and the ability to return a solution.
The basic MILP formulation fails to return any solution for
models with 70 or more blocks. The partially ordering heuristic
fails to return any solution for models with more than 110
blocks. Although this detail is not illustrated in Table I because
of averaging, according to our experimental results, the fully
ordering heuristic can occasionally achieve very low speed-
up values compared to the other approaches when there are
less than 20 blocks in the model. However, this issue is
not observed when there are large number of blocks. This
behavior is parallel to our expectations since optimization
can significantly reduce the effect of possible non-optimal
execution order decisions by trying large number of different
mapping of blocks to different cores.

In Fig. 5, we illustrate the comparison between the two
heuristics and the basic MILP formulation in terms of the
achieved speed-up over the number of nodes. The solid lines in
the plot represent how much average speed-up is achieved by
each approach. The dashed lines represent the corresponding
minimum and maximum speed-up for each approach. For very
small number of nodes, the basic MILP formulation is better
than the other approaches. However, when the number of nodes
increases, first, the partially ordering heuristic and, then, the
fully ordering heuristic perform best.

In Fig. 6, we illustrate the comparison between the two
heuristics and the basic MILP formulation in terms of the
average solver time over the number of nodes. Each line in
the graph represents the average solver time spent for each



TABLE I. COMPARISON OF DIFFERENT APPROACHES

# Nodes Approach Average
speed-up

Average
solver time

% found
Solutions

10-15
Basic 1.48 2 100%
Partial 1.47 1 100%
Full 1.46 0.5 100%

30
Basic 1.68 2620 100%
Partial 1.71 1558 100%
Full 1.46 26 100%

40
Basic 1.48 9256 100%
Partial 1.62 2091 100%
Full 1.55 606 100%

50
Basic 1.2 18000 100%
Partial 1.66 12481 100%
Full 1.67 5174 100%

60
Basic 1.09 18000 64%
Partial 1.55 17400 100%
Full 1.59 11685 100%

70 Partial 1.54 18000 100%
Full 1.75 18000 100%

80 Partial 1.39 18000 100%
Full 1.7 18000 100%

90 Partial 1.38 18000 60%
Full 1.61 18000 100%

100 Partial 1.08 18000 50%
Full 1.64 18000 100%

110 Partial 1.04 18000 30%
Full 1.67 18000 100%

130 Full 1.56 18000 100%
150 Full 1.62 18000 100%
170 Full 1.61 18000 100%

approach. As it is expected, due to the time limit given to the
solver, as the number of nodes increases, the solution times for
all approaches converge. However, the experiments on models
with less number of nodes suggests that the proposed heuristics
can improve the solver time. In the graph it can be observed
that the average solver time for proposed heuristics (as a
function of node count) is smaller than the basic formulation.
Combining the data in Fig. 5 and Fig. 6, we can see that the
fully ordering heuristic returns better solutions within shorter
solver run-time compared to the other approaches.

B. Case Study: Fault-Tolerant Fuel Control System

As a case study, we used the fuel rate control subsystem of
the Simulink Fault-Tolerant Fuel Control System demo. This
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model has 1 input port, 1 output port and 53 blocks after
discarding the trivial blocks as described in Section V.

We performed parallelization on a completely flattened
graph. The obtained block dependency graph from this model
is presented in Fig. 7 where the blocks mapped to core 1 and
core 2 are illustrated as the nodes colored with red and blue,
respectively.

We achieved a speed-up value of 1.78 with the partially
ordering heuristic within 5 hours of solver time. A speed-up
value of 1.92 was achieved with the fully ordering heuristic.
The basic MILP solution could only achieve a speed-up value
1.19 because it was unable to find the optimum solution within
the given time limit of 5 hours. This result is parallel with the
outcomes of the experiments carried on randomly generated
DAGs.

C. Case Study: Toyota Diesel Engine Controller

We used the Diesel engine controller model from [1] as
a case study from industry. The original model contains both
controller and plant parts. The controller part of model has
1004 blocks when flattened as described in Section V, it has
7 inputs that are merged into a single input bus signal and 6
outputs that are merged into a single output bus signal. Since
the model has cycles inside the subsystems, our tool flattens
the model by searching all blocks inside subsystems, breaks
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the cycles as described in Section V and merges blocks inside
subsystems (when possible) without introducing new cycles.
For parallelizing this model we set the target model depth as
2. After merging deep blocks of each subsystem, the block
dependency graph is generated from the model with merged
blocks. The generated block dependency graph contains 153
nodes and a total of 184 connections between these nodes. Our
target platform for this case study is the dual-core architecture
from Freescale which is described in Section III. In our target
hardware setup we have a total of 3.8 KB shared memory
available.

For a model of this size, both the basic MILP formulation
and the partially ordering heuristic fail in finding a solution in
10 hours. However, by merging blocks of subsystems with
depth more than 2 and with our fully ordering heuristic,
our tool returned a solution to the given problem within
an average of 1.2 hours of solver time. Here the average
is taken over different sets of worst case execution time
assignments. The suggested multi-core mapping by the tool
achieves 1.44x speed-up on average. This result is parallel with
our expectations based on experiments carried on randomly
generated DAGs and illustrates applicability of our approach
to reasonably large problems in industry.

VII. CONCLUSION

In this paper we presented our approach for parallelizing
a single-rate Simulink model on a multi-core architecture. We
proposed a heuristic for partially deciding execution order of
independent blocks when they are mapped to the same core.
According to the experimental results with randomly generated
DAGs and our case study with the fuel system controller, this
proposed heuristic improves optimality of found solutions in
a reasonable time for a realistic size of models with around
50 to 60 blocks in our experimental environment. For models
with larger number of blocks, we proposed another heuristic
in which the execution order of all the independent blocks is
decided in advance. With this approach our tool could handle
models with larger than 150 blocks. We also presented this
heuristic together with block merging methods on a case study
from the industry where our tool reduced 1004 blocks to 153
nodes on the dependency graph by merging blocks deeper than
a specified value and solved the problem on this 153 nodes.
The results from the case study illustrate how our approach
can handle models which can contain more than 1000 blocks.

For the future work, we consider extending this work
by introducing heuristic methods for solving the optimiza-
tion problem, studying multi-rate models and models with
blocks that have priority assignments. Furthermore, we plan
to incorporate worst case execution time (WCET) tools in our
framework.
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