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Abstract— Autonomous vehicles are in an intensive research
and development stage, and the organizations developing these
systems are targeting to deploy them on public roads in a
very near future. One of the expectations from fully-automated
vehicles is never to cause an accident. However, an automated
vehicle may not be able to avoid all collisions, e.g., the collisions
caused by other road occupants. Hence, it is important for the
system designers to understand the boundary case scenarios
where an autonomous vehicle can no longer avoid a collision. In
this paper, an automated test generation approach that utilizes
Rapidly-exploring Random Trees is presented. A comparison of
the proposed approach with an optimization-guided falsification
approach from the literature is provided. Furthermore, a cost
function that guides the test generation toward almost-avoidable
collisions or near-misses is proposed.

I. INTRODUCTION

Autonomous vehicles are safety-critical systems, and they
should be tested thoroughly before they are deployed on public
roads. Although the testing in real traffic environments is
not fully replaceable, simulation-based testing provides many
advantages such as fully controllable environments, ground-
truth information, ability to try a massive number of scenarios,
and creating risky scenarios without risking human life or the
vehicle under test.

Optimization-guided falsification techniques utilize optimiza-
tion engines to generate challenging scenarios for an Au-
tonomous Vehicle (AV) under test with the ultimate goal of
finding a scenario in which the Vehicle Under Test (VUT),
also called as Ego vehicle, fails to satisfy its requirements
[1], [2], [3], [4]. In our previous work [2], we have used an
optimization-guided falsification tool, S-TALIRO [1], to search
for maneuvers of agent actors (other road occupants) with the
aim of identifying the boundary between the safe and unsafe
operation of VUT.

In this paper, we propose an alternative approach to the
falsification-based approach that is described in [2]. We con-
sider the test generation problem as a path planning problem
for agent actors with the aim of creating interesting collisions
with vehicles under test by utilizing Rapidly-exploring Random
Trees (RRTs). Because of the nature of the driving environment,
an automated vehicle cannot avoid all collisions. For instance,
a collision with a vehicle that loses control and drives into the
automated vehicle may not be avoidable. Figure 1 illustrates
an unavoidable collision example. However, identifying the
boundaries between the collisions that are barely avoided or
the collisions that could have been avoided with minor changes
in the control or environment would be valuable for the
engineering teams to improve the safety-related capabilities of
the system. We focus on finding test cases that lead to behaviors
at the proximity of the boundary between collisions and near-
collisions. For this purpose, we propose a cost function that can
guide the test generation toward that boundary.
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Fig. 1. An unavoidable collision example. Red car suddenly moves into
the Ego vehicle’s lane at a very short distance.

RRTs have been first developed for robot path/motion
planning problems [5], [6], [7]. However, thanks to their ability
to efficiently search over high-dimensional spaces, RRT-based
approaches also deliver promising results in the test generation
domain [8], [9], [10], [11], [12], [13].

Since their first introduction, many variants of RRTs have
been proposed. In [6], a method called Transition-based
RRT (T-RRT) was introduced. Transition-based RRT method
extends the classical RRT by incorporating additional cost
criteria to the explored paths rather than only aiming to reach
a target configuration. T-RRT borrows the notion of transitions
tests from stochastic optimization approaches. Hence, it can be
considered as a method that is merging RRTs with stochas-
tic optimization. Furthermore, T-RRT controls exploration
versus refinement using a method called minimal expansion
control which helps to promote the expansion of a tree to
the unexplored areas of the search space. Efficiency of T-
RRT on continuous cost spaces is studied in [6]. An optimal
RRT approach, RRT*, was proposed, and the optimality was
analyzed by Karaman and Frazzoli in [7].

II. OVERVIEW OF THE APPROACH

In our approach, we utilize notions from RRT* [7] and
T-RRT [6] with a custom cost function that we propose to
find boundary-case collisions. We implement our version of
minimal expansion control using the notion of sparseness from
evolutionary algorithms that perform novelty search [14], [15].

With this approach, which we will refer to as “RRT-
based approach”, we address the following limitations of our
falsification-based approach [2]:

1. In [2], we use a limited number of control points over the
longitudinal position axis as the specific points where the
lateral axis of the vehicle trajectories are sampled. As the
number of control points decreases, possible variations in
shapes of the trajectories are limited. On the other hand,
increasing the number of control points also increases the
dimension of the search space, which makes the problem
more challenging.

2. In [2], the duration of the simulations is fixed. With the
RRT-based approach, although there is an inherent limit
on the maximum simulation duration that is dictated by
the maximum number of RRT nodes, there is flexibility
in the duration of the simulations. So, non-promising
simulations are stopped earlier while more promising ones
can be executed for longer times.

3. With the RRT-based approach, we can minimize the need
for hand-designing a test scenario in detail and allow more
freedom in the exploration of the space compared to the
falsification-based approach.



4. RRT-based approach is promising to avoid local minima
that can be challenging to the falsification-based approach
proposed in [2].

The flowchart of our RRT-based approach is shown in Fig. 2.
In the rest of this section, we will describe the key components
of our approach.
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Fig. 2. Flowchart illustrating the RRT-based approach.

A. Initializing the Search
A scenario, T , is described by the sets of Ego vehicles E , agent

actors A and environment S as T = E∪A∪S. The model of the
driving scenario is given asMT = (XT ,UT , PT , simT ) where
XT is the set of system states, UT is the set of system inputs,
PT is the set of system parameters, and simT is the system
simulation function, respectively, for the overall scenario. Given
x ∈ X , x̂ = sim(x,u,p, t) is the state reached starting from the
system state x after time t ∈ T under the input vector u ∈ U
and the parameter vector p ∈ P . Hence, the system simulation
function is a mapping sim : X × U × P × T → X where T is
a discrete set of time samples t0, t1, . . . , tN , with ti < ti+1.

In this approach, the set of inputs, UT , can simply be a
set of target paths for the agent actors, as well as inputs to
the other entities in the simulation environment such as models

of road and weather conditions. After general outlines of the
driving scenario are described, the sampling space for the initial
states, i.e., X0,T , is used to sample initial configurations of the
simulation entities, including Ego vehicles and agent actors.

B. Information Stored on RRT Tree Nodes
A tree grows while seeking to discover interesting behaviors.

While growing the tree, instead of executing simulation traces
starting from the initial configuration, only a partial simulation
is executed starting from an existing node in the tree. For that
purpose, the state of the system, the state of the controllers,
and the simulation time are stored on the tree nodes. Table I
provides more details on the data stored on the tree nodes after
each partial simulation. The history-related fields will be empty
for the root nodes of trees.

C. Sampling a Target Path Segment
A sample target path segment is simply a set of waypoints

which is used as an immediate target for the corresponding
vehicle. A waypoint is denoted as w = (xw, yw, θw, vw) ∈ Pw

where xw, yw, θw, vw are the x-coordinate, y-coordinate, target
driving direction and the target speed at the waypoint. The
sampling space for the waypoints is defined by a corresponding
parameter space Pw = Pw,x×Pw,y×Pw,θ×Pw,v that describe the
limits on the x − y coordinates, driving direction, and target
speed where Pw ⊆ PT . An example waypoint sampled on a
straight road is shown in Fig. 3. A coordinate transformation
can be applied for sampling from curved roads. Although the
example waypoint in Fig. 3 is sampled from a road, the sample
space of the waypoint doesn’t have to be the same as the area
of a road in the simulation. It may be defined to go beyond
the road limits, it may be limited to only a part of a road,
or it may be completely irrelevant to a road in the simulation
environment.

x

y

θw

xw

yw

Fig. 3. Sampling a waypoint.

Once a waypoint is sampled, the next step in sampling a
target path segment is to add an endpoint at a predefined
distance dleg from the waypoint, along the direction of the way-
point. Figure 4 shows a target path segment formed using this
approach. The sampled target path segment for this example
can be denoted by p = ((xw, yw, θw, vw), (xw2, yw2, θw, vw)).
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Fig. 4. Sampling a target path segment.

If the endpoint of a target path segment is outside the
sampling space of the waypoint, we simply break the segment



Data Description
State The state of the system at the end of the corresponding part of the simulation is stored. It serves as the initial state for a new

partial simulation that is starting from the configuration represented in the current node.
State History (optional) The state history over the corresponding part of the simulation is used to (i) reproduce agent behaviors after the search

is over (ii) to simulate any sensor delays for the next simulation step.
Input History (optional) The history of inputs to the system is used as the past input data for the next simulation step, which may be useful for

the systems that need to remember past inputs. This data is also valuable for analysis purposes when the search is over.
Controller State The final state of controllers, if available, are stored so that the next step of the simulation can be started from the current node

without needing to run the whole simulation from the starting node to the current node.
Simulation Time The time at the end of the corresponding part of the simulation is stored.

TABLE I
DATA STORED ON THE RRT NODES.

at the boundary of the sampling space and add a second leg
along the boundary in the direction closest to the waypoint
direction. Figure 5 shows an example target path section for a
longer dleg = dleg1 + dleg2 compared to the one in Fig. 4. The
sampled target path segment for this example can be denoted
by p = ((xw, yw, θw, vw), (xw2, yw2, θw2, vw), (xw3, yw3, θw2, vw)).
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Fig. 5. Sampling a target path segment with space constraints.

After the shape of the target segment is decided, we also
sample a target speed, vw, for the target path segment.

This approach is applied to each agent vehicle for sampling
their target path segments. Note that the framework we propose
allows using a different algorithm for selecting a target path
and/or any other type of input to the agent vehicles.

D. Selecting the Best Node from the Search Tree
Once target path segments for the agent vehicles are sampled,

we pick one node from the existing tree, as the initial configu-
ration for the simulation that will be executed with the sampled
target path segments. There is no single correct approach to
decide which node of the tree would be the best choice.

In our study, the notion of selecting the optimal node is
adopted from the RRT* method [7]. In [7], when adding a new
node to the tree, existing nodes in a neighborhood of the new
node are all checked and the one which minimizes the cost is
selected as the previous node. Our approach has similarities to
the RRT* one. We compute the sum of distances from each
vehicle to the starting point of their target path segment with
the constraint that the configurations of all vehicles are behind
the start position of the initial target waypoint with respect
to the driving direction of that waypoint. Then, we execute
partial simulations from the best n candidate previous nodes
(n = 5 for our case studies) and pick the one which gives the
minimum cost. We believe that this approach is promising to
create relatively natural-looking vehicle trajectories while still
allowing enough randomness in the maneuvers.

In [7], after adding the new node to the tree, there is
a rewiring step which modifies the connections to the other
existing nodes in the neighborhood of the new node. The
rewiring step checks whether reaching to an existing node in
that neighborhood from the newly added node would result in
a reduction in the cost without violating any constraints such
as obstacles. If so, it replaces the existing edge incoming to

that node with an edge originating from the newly added node.
Application of the rewiring step is straightforward for path
planning problems on Euclidean spaces where the tree nodes
represent planned waypoints on a path instead of the simulated
vehicle configurations. In our approach, the tree nodes are the
resulting configurations reached by the simulated vehicles with
a controller and an input target path. Hence, the rewiring step
requires the execution of partial simulations starting from the
newly added node to the other nodes in the neighborhood of
the newly added node. Since the resulting configuration will
most likely be different at the end of such a partial simulation,
the configurations on the target nodes will change. This creates
the necessity to execute simulations from the updated nodes to
all of the remaining tree nodes that can be reached from the
modified node. Hence, the rewiring step can be computationally
costly in our approach, and so, we do not apply the rewiring
step and leave it as a future work for which the applicability
should be analyzed.

We would like to emphasize that the function used for
selecting the best previous node is user-configurable in our
framework and depending on how much randomness is plau-
sible in the generated driving paths, a different algorithm, e.g.,
simply selecting the closest node, can be utilized.

E. Simulating the System
After obtaining a set of target path segments for agent

vehicles and deciding the initial configuration for the simulation,
we create the simulation scene in the simulation environment
using the data stored in the selected node of the search tree.
That is, we set the initial states of the simulation entities and
initialize the Ego vehicle controllers with the previous inputs
and the saved controller states. We also pass the sampled
target path segments to the agent vehicles as inputs. Finally, we
simulate the system for tsearch time and collect state and input
histories at each time step of the simulation. For our setup, we
use MATLAB simulations, however, this is not mandatory and
another simulator can be used. Note that if the simulator and
the Ego vehicle controllers allow saving the state and continuing
simulation from a saved state, which is the case in our setup,
the time spent in the simulations can be radically reduced
because it would be enough to simulate only the new part of
the simulation. Otherwise, the simulation should always start
from the root node of the tree and run until the current target
time.

F. Cost Function
After a simulation is executed, a cost function is used to

compute how close the simulation trace is to an interesting
behavior. The approach we describe here can be utilized to
discover other types of interesting/failing behavior; however,
our target in this work is to explore the behaviors that are on
the boundary between safe and unsafe operation. Hence, an
interesting behavior for our purposes would be (i) a collision



between an Ego vehicle and an agent that could have been
avoided with a minor change in the control applied or agent
trajectories, (ii) an almost-collision (near-collision) which could
have ended with a collision with a minor change in the control
applied or agent trajectories.

The properties of a good cost function that would guide the
search toward an interesting behavior for our purposes can be
listed as follows:
• Among two similar collisions between an Ego vehicle and

an agent vehicle, the one which has the smaller magnitude
in the relative speed between the vehicles should have a
smaller cost, as a smaller change in the speed of the Ego
vehicle would be enough to avoid the collision.

• Among two similar collisions, the one which has the
smaller impact area, i.e., the area of the collision surface,
should have a smaller cost, as a smaller change in the
steering maneuver of the Ego vehicle would be enough to
avoid the collision.

• For vehicle paths without a collision, a smaller time-
to-collision at any point of the path, and a smaller
corresponding collision speed and a smaller area for that
collision-to-be should lead to a smaller cost.

We propose the following cost function:

R(y) = (1 + scoll,y)(v
2
coll,y + ttc2min,y) (1)

where scoll,y ∈ [0, 1] is the ratio of the collision surface to the
overall surface on the collision side of the vehicle, vcoll,y is
the relative speed of the vehicles at the moment of collision,
and ttcmin,y is the mimimum time-to-collision encountered
during the simulation output trace y. For the simulations with
a collision, ttcmin,y is 0. For the simulations without a collision,
scoll,y and vcoll,y are computed at the instance of smallest time-
to-collision with the assumption that the vehicles continue their
motion without changing their speeds and orientations. When
the simulation output trace y contains collision(s) with Ego
vehicle, we only consider the first collision of an Ego vehicle
with any object for computing Eq. (1). Figure 6 shows the
function with respect to the minimum time-to-collision and
collision speed variables for a fixed collision surface. The effect
of the collision surface to the cost is linear.

Fig. 6. Cost function to guide the search toward the boundary between
collisions and near collisions.

G. Transition Check Function
The function we use for accepting a new configuration based

on the cost is similar to the one proposed in [6]. Algorithm 1
repeats it for convenience. We denote the newly simulated
configuration as the candidate and the initial configuration
selected from the search tree as previous configuration. In the
algorithm, K is a constant parameter normalizing the change

in the cost, T is the temperature parameter that is governing
the likelihood of acceptance. The temperature parameter T is
adaptively tuned by multiplying with or dividing by α with
respect to the ratio of rejections to acceptances.

Algorithm 1 Algorithm used to check acceptance of a new
configuration based on the change in the cost.

1: function ISTRANSITIONOK(cprev, ccand) .
cprev and ccand are the costs associated with the previous
and candidate configurations, respectively. α and K are
constant parameters, and T is a persistent parameter.

2: if ccand < cprev then
3: return True
4: end if
5: if rand(0, 1) < e(cprev−ccand)/(K∗T ) then
6: T = T/α
7: numberOfFails = 0
8: return True
9: else

10: if numberOfFails ¿ maxNumberOfFails then
11: T = T ∗ α
12: numberOfFails = 0
13: else
14: numberOfFails = numberOfFails + 1
15: end if
16: return False
17: end if
18: end function

H. Novelty Function
To get better coverage of the state space and to avoid

local minima, we reward novelty in our search. For an Ego
vehicle ei ∈ E and an agent aj ∈ A, we define xei,aj [k] as
the vector of relative states and change in relative states at
discrete simulation time k ∈ [0, n], i.e., xei,aj [k] = (xei [k] −
xaj [k], (xei [k]− xaj [k])− (xei [k − 1]− xaj [k − 1])).

We compute the novelty of xei,aj [k] as follows:

N =

m∑
l=0

dist(xei,aj [k], µl) (2)

where µl ∈ Xrel,k−1 is the lth nearest neighbor of xei,aj [k]
in the set Xrel,k−1 which contains xei,aj vectors for all ego-
agent pairs for all times before k. The function dist computes
the Mahalanobis distance between xei,aj [k] and the elements of
its m-nearest neighbors set. We choose to use the Mahalanobis
distance because of its ability to provide a dissimilarity measure
between two observations by utilizing the sample covariance
matrix [16].

As each new configuration has a corresponding partial sim-
ulation of length tsearch starting from a previous configuration,
we compute the novelty for the trace of that partial simulation
using Algorithm 2.

I. Termination Condition
Our algorithm checks a set of termination conditions to

stop the search and returns the configuration which has the
minimum cost associated with it. One of the termination
conditions we use is a threshold for the minimum interesting
cost. Another termination condition is a preset maximum
overall time spent. Alternative termination conditions can be
used, e.g., a maximum number of nodes in the search tree.



Algorithm 2 Algorithm used to check the novelty of a new
configuration.

1: function ISNOVEL(ζ, E ,A, kstart, kend, cprev, ccand)
2: Nlast is persistent and keeps the last computed 10

novelty values. numR is persistent and keeps the number
of rejections. maxReject is the maximum number of
consecutive rejections. Xrel,k is persistent and keeps the
set of all past relative state computations. cprev and ccand
are the costs associated with the previous and candidate
configurations, respectively.

3:
4: Initialize N as an empty set
5: for each ei ∈ E do
6: for each aj ∈ A do
7: for k = kstart to kend do
8: Compute xei,aj [k] from ζ
9: Compute m-nearest neighbors of xei,aj [k]

in Xrel,k−1

10: Compute N (novelty) with Eq. (2)
11: Add N to N
12: Add xei,aj [k] to Xrel,k

13: end for
14: end for
15: end for
16: N = max(N)
17: Update Nlast to keep the last computed 10 novelty

values
18: if ccand < 0.9cprev or numR ¿ maxReject or
|Nlast| < 10 or N > mean(Nlast) then

19: numR = 0
20: return True
21: else
22: numR = numR + 1
23: return False
24: end if
25: end function

III. CASE STUDIES

Here, we present 2 case studies and compare our RRT-based
approach with our falsification-based approach [2].

A. Case Study 1
1) Scenario Setup: In this case study, we have 2 agent

vehicles and 1 Ego vehicle on a 3-lane straight road, i.e., A =
{a1, a2} and E = {e}. Figure 7 gives an high-level overview of
our simulation setup. The initial position of agent vehicle 1 on
the x axis is randomly sampled between 0m and 25m, the initial
x position of agent vehicle 2 is randomly sampled between 10m
and 20m, and the initial x position of Ego vehicle is randomly
sampled between 30m and 50m. The initial positions of agent
vehicles on the y axis are sampled between the centers of lane
1 and lane 3, i.e., between −3.5m and 3.5m, and the initial y
position of Ego vehicle is randomly sampled between −1.75m
and 1.75m, that is the lane markings separating Lane 3 and
Lane 1 from Lane 2, respectively. The initial orientation of
the Ego vehicle with respect to the x axis is randomly sampled
between −π/8 rad and π/8 rad. The initial speed of Ego vehicle
is sampled between 10m/s and 15m/s while the target speed
is fixed to 15m/s. The initial speeds of the agent vehicles are

sampled between 0m/s and 15m/s, and their target speeds at
each waypoint are sampled between 0m/s and 30m/s.
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Fig. 7. Vehicle initial states in the simulation setup for Case Study 1.

Ego vehicle has 5 sensors. Figure 8 visualizes the sensor
placement and ranges of the sensors. A long-range sensor with
a 45◦ field of view and 60m range is placed at the front
of the vehicle. Two 10m-range sensors with 90◦ field-of-view
are placed on the sides, facing left and right. Two 10m-range
sensors with 90◦ field-of-view are placed at the rear-left and
rear-right corners with an angle to scan the area behind the
rear corners of the vehicle.

10
m
60m

Fig. 8. Ego vehicle sensor setup for Case Study 1.

Agent vehicles are controlled by the move-to-pose controller
described in [17]. Ego vehicle controller has multiple modes
based on the collision risk. When there is no estimated collision
risk, a proportional control is applied to track target driving
speed. If a collision is estimated in front, emergency brakes are
applied and at the same time, depending on the occupancy of
rear-left and rear-right areas, left or right steering is applied,
respectively. If a collision is estimated in front-left (right),
emergency brakes are applied and if rear-right (left) area is
empty, also steering is applied to the right (left). If a collision is
estimated in rear-left (right), if front and front-right (left) areas
are empty, vehicle is accelerated with a right (left) steering, if
only front area is empty and the vehicle on the front-right
(left) is not imposing a risk, vehicle is accelerated without
steering, otherwise emergency brakes are applied and right
(left) steering is applied if the rear-right (left) area is empty. If
the area to which a maneuver is being done gets occupied during
the maneuver, emergency brakes are applied. Control switches
back to normal mode if there is no more collision risk and a
predefined time has passed since the last collision estimation.
The collision avoidance algorithm presented here is very simple
and it is not comparable to a controller that could be found
in a real ADS. However, since our target in this work to study
test generation approaches, rather than proposing a controller,
we argue that this naive control approach is satisfactory for
the purpose of this work. For the lateral control, we use the
Stanford Racing Team’s controller that was used in the DARPA
Grand challenge [18].

2) Experiment Results: We have run 200 experiments with
the falsification approach and with the RRT-based approach.
The minimum, mean and maximum costs achieved by the



Fig. 9. The minimum cost result returned by the RRT-based approach in Case Study 1.

Fig. 10. The minimum cost result returned by the falsification-based approach in Case Study 1.

falsification approach were 0.0001, 12.4794, and 100.6082, re-
spectively. The minimum, mean and maximum costs achieved
by the RRT-based approach were 3.9124, 17.7190, and 88.9793,
respectively. Figure 9 and Fig. 10 visualize the minimum-cost
trajectories returned by the RRT-based and falsification-based
approach, respectively. Histories of the vehicles are numbered
to show their evolution over time. Figure 11 provides box and
whisker diagrams of the minimum costs achieved by the two
approaches among the 100 experiments we have carried. The
black diamonds plotted on top of the box plots show the mean
values for the returned minimum costs. In this case study,
the falsification-based approach achieved smaller mean cost
values, as well as the smaller minimum cost compared to the
RRT-based approach. One reason for this is that, since the
space between agent vehicles and Ego vehicle is open, there
are not many local minimums that would make the exploration
capabilities to achieve better than falsification-based approach.
As it is easy to find a trajectory that is in the neighborhood
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Fig. 11. Comparison of the minimum cost achieved by the falsification
approach and the RRT-based approach in Case Study 1.

of an interesting case, falsification approach can focus on that
neighborhood and minimize the cost as much as possible while
RRT-based approach keeps looking for novel trajectories.

B. Case Study 2
1) Scenario Setup: In this case study, we have 4 agent

vehicles and 1 Ego vehicle on a multiple-lane straight road,
i.e., A = {a1, a2, a3, a4} and E = {e}. Figure 12 gives an high-
level overview of our simulation setup. The initial position of
agent a1 on the y axis is randomly sampled between 1.25m
and 6m, the initial y positions of agent vehicles a2, a3, a4 are
randomly sampled between −2.25m and −1.75m. The initial
speed of a1 is randomly sampled between 5m/s and 15m/s,
and its target speed at each waypoint is sampled between 0m/s
and 30m/s. The initial and target speeds of all other vehicles
are set to 15m/s. All other initial states of the vehicles are
fixed.

Ego vehicle has 5 sensors. Figure 13 visualizes the sensor
placement and ranges of the sensors. A long-range sensor with
a 22.5◦ field of view and 50m range is placed at the front of
the vehicle. Two 5m-range sensors with 90◦ field-of-view are
placed on the sides, facing left and right. Two 7m-range sensors
with 90◦ field-of-view are placed at the rear-left and rear-right
corners with an angle to scan the area behind the rear corners
of the vehicle.

Agent vehicle a1 is controlled by the move-to-pose controller
described in [17]. Agent vehicles a2, a3, and a4 are driven with
a constant speed on a straight line. Ego vehicle controller is the
same as the one described in Case Study 1.
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Fig. 12. Initial states of the vehicles in the simulation setup for Case Study
2.
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Fig. 13. Ego vehicle sensor setup for Case Study 2.

2) Experiment Results: For this case study, we only search
for an optimal trajectory for a1 with the target of minimizing
the cost function described in Eq. (1). The existence of agent
vehicles a2, a3, and a4 between Ego vehicle e and agent vehicle
a1 creates many local minima for the selection of a1 trajectories.

In this case study, we have executed 100 experiments with
both the RRT-based approach and the falsification-based ap-
proach in MATLAB. Each run of both approaches had a
time-out duration of 30min. Out of 100 runs, only 5 of the
minimum-cost trajectories returned by the falsification-based
approach was able to make a1 to move into the lane of Ego
vehicle, and only 2 trajectories were able to cause a collision (1
high-speed collision and 1 boundary-case collision) and, other
than the collision cases, only 1 trajectory was able to challenge
Ego vehicle by activating its collision avoidance system. All
other trajectories returned by the falsification approach were
stuck in local-minima where a1 tries to get closer to Ego vehicle
and ends up colliding with one of the other agent vehicles. On
the other hand in 28 of the minimum-cost trajectories returned
by the RRT-based approach, agent a1 was able to get into the
lane of Ego vehicle and it was able to cause Ego vehicle to
collide in 11 of those cases.

Figure 14 shows one of the interesting collision cases dis-
covered by the RRT-based approach. Agent a1 first forces Ego
to move to the right to avoid a collision and then to the left
where it ends up colliding with Agent a3. Histories of a1 (red)
and Ego (yellow) vehicles are numbered to show their evolution
over time. Figure 15 shows the only small-speed collision case
discovered by the falsification-based approach. Agent a1 moves
into the Ego vehicle’s lane, accelerates and rear-ends with Ego
vehicle even though Ego vehicle tries to avoid the collision
by accelerating and steering away. Figure 16 shows a typical
trajectory that is stuck in a local minimum. Agent a1 tries to
move closer to Ego vehicle and reduces the time-to-collision but
collides with one of the other agents, which is a2 in this figure.
Although both approaches can get stuck in a local minimum,
this case is significantly more common for the falsification-based
approach as discussed above.

As a numerical comparison of the minimum costs dis-
covered by the two approaches, the minimum, mean and
maximum costs achieved by the falsification approach were
0.0043, 13.7134, and 50.6017, respectively. The minimum, mean
and maximum costs achieved by the RRT-based approach
were 4.8955, 10.2571, 15.0856. Figure 17 provides box and
whisker diagrams of the minimum costs achieved by the two
approaches among the 100 experiments we have carried. The
black diamonds plotted on top of the box plots show the
mean values for the returned minimum costs. While 44 out of
100 RRT-based approach experiments were able to avoid local
minima occurring around the cost 10, only 2 of the falsification
approach experiments were able to achieve this.

An observation we would like to share is that in the single
case where the falsification approach was able to cause a small
speed collision, the achieved minimum cost was significantly
smaller than any of the 11 collision cases discovered by the
RRT-based approach. This observation supports our conclusion
in Case Study 1, i.e., when the falsification-based approach
can get into the neighborhood of a local or global minimum,

it is more able to get closer to the minimum point than
the RRT-based approach. The advantage of the RRT-based
approach in avoiding local minima and the advantage of
the falsification-based in reaching minima suggests that an
approach combining these two has the potential to improve
the overall test generation performance. In such an approach,
firstly, RRT-based approach would discover neighborhoods of
minima and then the falsification-based approach would guide
the test toward the minima starting from the results of the
RRT-based approach.

IV. CONCLUSION AND FUTURE WORK

We proposed an approach that explores maneuvers for road
occupants using rapidly-exploring random trees with the target
of minimizing safety/performance cost functions defined for
the automated driving system under test. In our approach,
we have adopted notions from transition-based RRT [6] and
RRT* [7] methods. Our RRT-based approach delivered more
promising results compared to the stochastic optimization-based
falsification approach which is described in [2] for the problems
which contain many local minima that should be avoided for
reaching the global minimum.

When formulating the agent trajectory generation problem
as an optimization problem, the trajectories are presented with
a finite number of parameters, i.e., waypoint parameters for a
fixed number of waypoints, which are provided by the test
designer. One of the advantages of utilizing the RRT-based
exploration is the ability to abandon the finite parameterization
of the trajectories. This creates the opportunity to more freely
explore the space, and to minimize the need for manually
designing the general structure of the trajectory shapes. In
an optimization-based approach, choosing a small number of
parameters would limit the flexibility in generating critical
trajectories, while choosing a large number would increase
the dimensionality of the search space. For instance, in our
Case Study 2, the number of parameters that the optimization
method would need to create the minimum-cost trajectories that
are discovered by the RRT-based approach varies from 8 to 68
based on the number of parameters at each waypoint and the
number of waypoints that are used to create these tajectories.

Future work will include:
• Exploring new methods for computing the novelty of a

trajectory instead of a single state
• Computing a cost on the shape of the trajectory instead of

computing the minimum of the instantaneous costs of the
points on the trajectory. This may especially be useful for
rewarding some types of vehicle paths such as the ones
which are closer to real-world driving behaviors.

• Exploring new methods for using multi-objective optimiza-
tion can be studied for different objectives like time-to-
collision, collision speed, collision impact area etc.

• Combining RRT-based approach with the falsification-
based approach such that the exploration starts with RRT-
based approach and falsification-based approach further
minimizes the cost starting from the best cases discovered
by the RRT-based approach.
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