
Utilizing S-TaLiRo as an Automatic Test Generation Framework for
Autonomous Vehicles

Cumhur Erkan Tuncali, Theodore P. Pavlic and Georgios Fainekos

Abstract— This paper proposes an approach to automat-
ically generating test cases for testing motion controllers of
autonomous vehicular systems. Test scenarios may consist of
single or multiple vehicles under test at the same time. Tests
are performed in simulation environments. The approach is
based on using a robustness metric for evaluating simulation
outcomes as a cost function. Initial states and inputs are
updated by stochastic optimization methods between the tests
for achieving smaller robustness values. The test generation
framework has been implemented in the toolbox S-TaLiRo.
The proposed framework’s ability to generate interesting test
cases is demonstrated by a case study.

I. INTRODUCTION

Driver Assistance Systems (DAS) like lane keeping, adap-
tive cruise control, pedestrian/obstacle collision avoidance,
automatic lane change, emergency braking systems and many
more are being used in high-end modern automotive systems.
Prototype autonomous vehicles have already driven more
than a million miles on the roads. However, ensuring safe
operation of these vehicles will require intensive testing
in various scenarios, which will be a major challenge. As
addressed by Bengler et al. [1], testing autonomous vehicles
is a challenging problem which can not be efficiently handled
with conventional approaches. According to Maurer and
Winner [2], considering the pace of functional growth in
DAS, lack of efficient testing can affect time-to-market for
more advanced systems like fully autonomous vehicles.

Because tests involving autonomous vehicles would com-
prise test cases which may lead to collisions or near col-
lisions, performing many tests with actual vehicles ending
with collisions would not be economically efficient and
practical. An alternative for testing these systems is using
computer simulations for the vehicles and their surroundings.
However, manually creating test scenarios with large number
of different environmental settings and road conditions would
be difficult and highly time consuming. Furthermore, in
order to extract the limits of the systems under design,
engineering teams would like to discover the behaviors on
the boundary between safe and unsafe operations. Creating
test cases manually for detecting the boundary conditions
which barely cause collisions like fender-benders may be a
challenging job. We believe that automatic test generation
frameworks utilizing simulations are crucial for the future of

This work has been partially supported by awards NSF CNS 1446730
and NSF CNS 1350420

C.E. Tuncali, T.P. Pavlic, and G. Fainekos are with School of Computing,
Informatics and Decision Systems, Arizona State University, Tempe, AZ
85281, USA
(e-mail:{etuncali, tpavlic, fainekos}@asu.edu)

autonomous vehicle testing. Such frameworks would produce
large number of tests generated in an intelligent way and
help engineering teams to discover unforeseen scenarios that
could lead to failure.

Although discovering potential problems by testing in the
simulation environments would be beneficial, due to the
inevitable differences in the simulation environments and the
real-world, some test cases that do not fail in simulations may
fail in the real-world or vice versa. So, instead of getting
pass/fail results from the tests, using a metric that indicates
how close each test result is to a failure case, similar to phase
and gain margins in control theory [3], would be more useful.
With availability of such a metric, engineering teams can run
large number of tests in faster simulation environments and
after (automatic) analysis of the test results, they can repeat
some scenarios in the real world using the methods described
in [4] or in much more accurate simulators that require more
computation power/execution time.

In this paper, we address the problem of creating an
automatic test generation framework for autonomous ve-
hicle systems with a focus on collisions. Because of the
dynamics and possible physical limitations on the motion,
an autonomous vehicle cannot be expected to be collision
free for every possible situation. For instance, it may not be
possible to avoid a collision with a vehicle cutting in front at
a very short distance or with a vehicle approaching very fast
from a side. Our main focus is to find the conditions on the
boundary between safe scenarios and collision scenarios. Our
approach is based on running simulations, using simulation
results to compute a robustness value that shows how close a
system trajectory gets to an unsafe set of states and utilizing
optimization methods to seek smaller robustness values by
changing initial states and inputs for the system for the next
test case.

II. RELATED WORK

State of the art in testing advanced DAS is discussed by
Stellet et al. [5]. They categorize the main principles for
a testing framework as: (i) derivation of test criteria and
metrics, (ii) establishing a reference system as the ground
truth information and (iii) generation of test scenarios. The
use of robustness metric in our approach falls into the cat-
egory (i) per their taxonomy. Simulation environment itself
can be considered as the category (ii), and the optimization
engine for S-TaLiRo that is used to create test trajectories can
be considered as the category (iii) based on the discussions
in that work. Our robustness metric definition can be a
candidate to quantitatively measure safety of autonomous

vehicles against collisions. S-TaLiRo provides methods for
automatic, high throughput testing of fully autonomous ve-
hicles inside simulations that can cover complex real-world
traffic situations.

A vehicle in the loop (VIL) test setup is presented by Bock
et al. [6]. They discuss the advantages of using simulators
for testing DAS. Their approach is based on having a human
driver in a simulator and using conventional methods for
generation of test cases.

Althoff et al. [7] propose an online formal verification
approach for autonomous vehicles. The approach proposed
in that work is based on reachability analysis for the ego
vehicle, i.e., the vehicle under control, and other participants
on the road. They compute the reachable sets and occupancy
of the ego vehicle for reference trajectories and claim that
the reference trajectory is safe if occupancy of the ego
vehicle does not exit drivable area nor intersect with the other
participants on the road. They assume that other participants
obey the traffic rules. However, in [7], they are only consid-
ering verification of planned trajectories and executing the
trajectories that are deduced to be safe. In contrast, the test
results with our approach give an idea on how the mistakes
of other vehicles in the traffic are handled by the ego vehicle
which is a valid concern for traffic environments consisting
of both autonomous and non-autonomous vehicles.

Our approach is complementary to the VIL testing, online
verification and testing with real vehicles [4], as it will
suggest important and challenging test-cases for existing
methods.

III. PROBLEM DEFINITION

We denote the set of autonomous Vehicles Under
Test (VUT) by V = {v1, . . . , vp}, surroundings for the
VUT by S = {s1, . . . , sq}, and the set of dummy actors
by D = {d1, . . . , dr}. In more detail, the vehicles in the set
V are simply Cyber-Physical Systems (CPS) which are to
be tested either partially, e.g., controller only, or as a whole.
The surroundings S consist of the environmental settings
like road network, weather and road conditions, traffic rules
and special zones. The set D of dummy actors, i.e., the
mobile or immobile objects in the surroundings, may contain
dummy vehicles, pedestrians, obstacles, etc., optionally with
controllers that can give them mobility. The dummy actors
physically interact with the VUT and they are typically used
to trick the VUT in various test scenarios.

The initial state vectors for the VUT in V, the sur-
roundings S and dummy actors D are respectively denoted
by x0,V, x0,S, and x0,D. The range of initial values for
the ith state of the kth entity in a set V, S, or D,
is denoted by Rvik , Rsik , Rdik , respectively. These ranges
define the domains for the initial state vectors. For instance,

x0,V ∈
|V|∏
k=1

(Rv1k × . . .×Rvσkk), where
∏

and × denote

Cartesian product, |V| is the number of elements in V and
σk is the number of states for vk ∈ V. We denote the
concatenation of the initial state vectors x0,V, x0,S, and
x0,D, i.e., the initial state for the overall setup, by x0.

Abbas et al. [8] parameterize input signals u(t) over a
bounded time domain R, by the parameter vectors λ =
[λ1 . . . λm]T ∈ Λ, τ = [τ1 . . . τm]T ∈ Rm, where Λ is a
compact set, τi < τj for i < j, such that for all t ∈ R,
u(t) = U(λ, τ)(t) ∈ R. The function U(λ, τ) returns a
function which is parameterized by λ and τ . For instance, U
could represent the space of functions parameterized using
splines [9]. We slightly modify the notation used in that work
to allow inputs to be functions of the states of the system,
not only signals over time. Hence, we allow the set R in the
above notation to be the bounded domain of any variable
which can be a state of the system or time. We use the
notation uV, uS, uD for the vectors of input functions for
the entities in V, S, D, respectively. Each entry of these input
vectors is a tuple (λ, τ,U), i.e., parameterization vectors and
a choice of interpolation function, corresponding to an input
for an entity of V, S, or D. We denote the input functions
for the overall simulation setup by u.

We define a simulation over V, S and D as a func-
tion ΣV,S,D : X̄0 × Λ̄ × R̄ 7→ Rn×k where X̄0 defines the
domain for the initial states, Λ̄ and R̄ define the domain for
the λ and τ parameters of all the input functions respectively,
k is the number of simulation steps and n is the total number
of outputs generated by the elements of V, S and D.

The problem we target is to compute:

(x∗0, ū
∗) = arg min

x0∈X̄0,λ̄∈Λ̄,τ̄∈R̄
R
(
ΣV,S,D

(
x0, ū(λ̄, τ̄)

))
(1)

where R : Rn×k 7→ R is defined as a robustness (cost)
function, λ̄ is the vector of λ parameters and τ̄ is the vector
of τ parameters for all the inputs. The vector ū contains all
input functions, and it is obtained by applying the interpo-
lation function U(λ, τ) for each input to the corresponding
parameter vectors λ, τ from the selected vectors λ̄, τ̄ .

In other words, for a given simulation function, a set of
vehicles under test, a set of dummy objects, surroundings
information and constraints on state space and input space,
we are seeking the particular inputs and initial states for the
simulation that would minimize a robustness function.

Careful selection of a robustness function is important
for (quickly) finding initial states and input signals which
lead to critical operating points of the system under test like
boundaries between safe and unsafe behavior.

IV. SOLUTION OVERVIEW

A simplified overview of the architecture of our approach
is illustrated in Fig. 1. The main components of the vehicular
systems testing framework that we propose are the optimiza-
tion engine of S-TaLiRo, a simulation engine, a robustness
evaluation function and a simulation configuration.

A. S-TaLiRo

S-TaLiRo [10] is a MATLAB [11] toolbox for systematic
testing of hybrid systems, i.e., the systems that exhibit contin-
uous and discrete dynamics. It uses a robustness metric that
represents how far a system trajectory is from falsifying for-
mal system requirements. In particular, negative robustness

Simulation
engine

Simulation
configuration

Robustness
evaluation
function

S-TaLiRo
(optimization engine, stochastic sampler, input generator)

Configuration

Configuration Output trace

Initial conditions
& Inputs

Robustness
measure

Fig. 1. An Overview of the Framework Architecture

values mean a requirement is falsified, i.e., conditions have
been found under which the system does not satisfy a re-
quirement. S-TaLiRo uses one of various global optimization
methods for minimizing the robustness function [10] and,
thus, for seeking a falsifying system trajectory. We utilize
S-TaLiRo for solving the problem defined in Section III,
basically for intelligently sampling initial states and input
functions that will be applied to the simulations.

First, a sample space is created from the user defined input
and/or initial state configuration. Then, an initial states vector
and an input functions vector are sampled from the generated
sample space. The simulation of the vehicular systems is exe-
cuted for a predefined amount of time with the selected initial
states and inputs. As illustrated in Fig. 1, the simulation
engine returns the simulation output trajectory which consists
of states and/or outputs of the simulated system(s) for each
time step of the simulation. The output trajectory obtained
from the simulation is supplied to the robustness evaluation
function that returns a real-valued robustness measure as
an evaluation of how close the simulation results are to
an unsafe set of states. The obtained robustness measure is
used by the optimization engine and the stochastic sampler
in S-TaLiRo for generation of the inputs and initial states
for the next simulation with an attempt to obtain smaller
robustness values. This cycle of input generation, simulation
and robustness evaluation continues until either a negative
robustness value is achieved or the maximum number of
simulations is reached which we use as the termination
conditions for the optimization problem given in (1).

B. Simulation Configuration

Simulation configuration is used to parameterize a wide
range of classes of systems and scenarios. The automated
test generation proceeds by sampling points from this pa-
rameterized space as explained above. A test scenario can
be described in a simulation configuration with a focus on a
function with different types of systems and environments.

Referring to the definitions given in Section III, a sim-
ulation configuration is basically a structure describing the
sets V, D, S, and the initial state and input spaces X̄0 and
Ū = Λ̄ × R̄. The space for the initial states is described
by supplying the ranges for each initial state, e.g., Rvσki ,
and the space for the inputs is described by supplying the
parameterization, i.e., (λ, τ,U) as detailed in Section III. The
simulation configuration can further constraint the relations
between the initial states and inputs.

A typical configuration contains environmental parame-
ters, the number of vehicles in the simulation and parameters
for each vehicle. Some examples to the environmental pa-
rameters could be wind, road incline, lane width, number of
lanes, inputs and states of the environment. Vehicle-related
parameters can be mass, tire-friction, ranges of initial states
and inputs, function handles that describe dynamics of these
vehicles or controllers for the vehicles. These are only some
examples and the actual parameters must be completely
defined by the user in accordance with the user supplied
simulation engine and the robustness evaluation function.

C. Simulation Engine

The simulation engine can be a MATLAB function,
a SIMULINK [11] model or any external simulator like
WEBOTS [12] or CARSIM [13] that can be wrapped by a
MATLAB function. The simulation engine must be able to
accept inputs described in the configuration, and it must
return the computed states and/or outputs for each time
step of the simulation. Because the simulation configuration
is available to the simulation engine, the user can freely
parameterize the simulation engine in the desired level of
detail in accordance with the testing purposes.

Here, we recall the definition of a simulation function
given in Section III as ΣV,S,D : X̄0 × Ū 7→ Rn×k. In sum-
mary, the simulation engine first initializes the models and/or
controller functions of the VUT in the set V, surroundings S
and the dummy actors D with given initial states. Then, it
executes these models/controllers with respect to the given
inputs while considering the interactions of the entities in the
above sets with each other.

D. Robustness Evaluation Function

The robustness evaluation function is used as a cost
function in the optimization engine of S-TaLiRo. It can either
be supplied by the user or used from robustness computation
implementations with respect to temporal logic specifications
available in S-TaLiRo [14].

In a simulation setup, as the number of variable parameters
increase, the space created by these parameters can be very
large. Testing every combination over such a large space
and finding falsifying behaviors is infeasible in most cases.
Because S-TaLiRo is based on optimization over robustness,
the obtained robustness values from different simulations are
expected to guide the search towards a failure as opposed to
completely random selection of test cases. It should be noted
that the choice of the robustness evaluation function plays an
important role for better guidance.

A robustness evaluation function must return smaller ro-
bustness values as we approach to the most interesting failing
system behavior that we seek for. If a negative robustness
value is obtained, S-TaLiRo immediately stops and returns
the related trajectory as a falsifying trajectory. Otherwise,
the search for smaller robustness value over trajectories
continues until a given maximum test count is reached.

In this work, we mainly focus on testing autonomous
vehicles against collisions in an environment where some

vehicles may follow trajectories that can lead to dangerous
situations. Furthermore, we seek the conditions, i.e., initial
states and input signals, that lead to near collisions. Hence,
we design a robustness evaluation function so that the
boundaries between safe and unsafe behavior can be reached
by minimizing the robustness function. Here, we will propose
a robustness evaluation function that can be applicable to a
wide range of setups for testing autonomous vehicles with
a purpose of detecting collisions and/or the situations where
vehicles exit a predefined drivable area.

For a collision instance between two vehicles with ve-
locities ~v1 and ~v2 at the time of collision, we compute
the severity of the collision as ‖~v1 − ~v2‖, where ‖ · ‖ is
the Euclidean norm. When a collision involving a VUT is
detected in a simulation output trajectory y, we compute
vcoll,y as the collision severity at the moment of the first
collision experienced in y.

If there is no collision involving a VUT in a simulation
output trajectory, we use a safety measure called Time-To-
Collision (TTC) [15]. The TTC is the time required for two
vehicles to collide when they are on a collision path. Being
on a collision path for two vehicles means that they will
collide if they continue their current motion. In particular,
the TTC for two vehicles that are not on a collision path is
infinite. We use the looming points approach described by
Ward et al. [16] for collision path and TTC computations.
The minimum TTC experienced between any two vehicles
during a simulation trace y is denoted by ttcmin,y .

Note that we can use collision severity and TTC metrics
for testing against a vehicle exiting the drivable area. Consid-
ering the boundaries of drivable areas as stationary objects,
e.g., a wall, TTC or collision severity with these objects can
be computed in a similar manner by taking the velocity of
the objects as a zero vector.

Because we search for the boundary between safe and
unsafe operations, we can consider a collision where vehicles
barely touch each other with zero difference in velocities
as the boundary case that we seek. Hence, a collision with
high relative velocity between the vehicles must have a larger
robustness value compared to a collision with low relative
velocity. In addition, a simulation trace with no collision
must have larger robustness value compared to a simulation
result involving a collision. Our proposed robustness function
R(y) for a simulation trace y is given below:

R(y) =

{
vcoll,y − vε , collision detected in y
ttcmin,y + vcoll,max , otherwise.

(2)

where vcoll,max is the maximum possible relative collision
velocity and vε is a user defined nonnegative real-valued
number representing the minimum collision severity of con-
cern. Whenever the framework achieves a collision with
a severity smaller than vε, the robustness value will be
negative and the search will be terminated. In particular,
setting vε to zero means that we are seeking the collisions
with the vehicles barely touching each other. However, in this

case, the search will continue until the maximum number of
simulations is reached and the detected minimum robustness
value will be returned.

We assume that we know maximum possible velocity for
all the objects in the simulation which is denoted by vmax.
The maximum collision velocity in a simulation can be
experienced between two vehicles traveling at the maximum
speed in opposite directions. Hence, vcoll,max = 2vmax.

V. CASE STUDY

As a case study, we use the simulation engine with the
simulation configuration described below and the robustness
function in (2). S-TaLiRo is configured to use the simulated
annealing method [17].

A. Simulation Configuration for the Case Study

Our case study consists of two VUT in the set V and
a dummy vehicle in the set D on a straight two-lane road
that is described in S. The inputs to the simulation are the
target speed functions for the VUT and target speed and
lateral position functions for the dummy vehicles. Target
speed functions are defined over time, and the target lateral
position function is defined over the longitudinal position
state of the dummy vehicle.

One of the VUT is following the other on a straight
target trajectory on the right lane of a two-lane road. The
dummy vehicle has a trajectory which starts on the left lane
of the road and changes to the right lane after a distance
chosen by the testing algorithm. The target position of the
dummy vehicle inside a lane is varying over the course of
the simulation and the lane change position is also sampled
from a predefined longitudinal position range.

The shape and dimensions of the vehicles are described in
the configuration as the critical points, e.g., corners, of the
vehicles. These points are used to detect collisions and also
used in the looming points method [16] to check collision
paths and to compute the TTC values.

B. Simulation Engine for the Case Study

For the simulation of the VUT, we use a vehicle dynamics
model from the literature [18], [19]. To accurately represent
the dynamics of the VUT, we use relatively complex dy-
namical models that are costly to compute during simulation.
However, it is not computationally practical to use dynamical
models of similar complexity for the dummy vehicles that
are merely meant to generate reasonable test trajectories to
challenge the VUT. Furthermore, the actual controllers on
the dummy vehicles will be out of the control of the tester,
and so all that is necessary for the dummy vehicles is to
capture the salient features of realistic vehicles in simulation.
Consequently, for the dummy vehicles, we use simpler
kinematic models and controllers. The kinematic model we
use for the dummy vehicle in our case study is described by
Walsh [20]. We have implemented our simulation engine for
the case study as a MATLAB function.

C. Sensor Setup

We describe the sensors on the vehicles by their orien-
tation, range, maximum sensing angle and position with
respect to the center of mass of the vehicle. In our case
study, we use a sensor setup for side collision avoidance. The
vehicles under test have one distance sensor in front with a
range of 40 m and 10◦ sensing angle and one distance sensor
on the left side with a range of 3 m and 45◦ sensing angle.
The sensor placement and orientation is illustrated in Fig. 2.
The rectangle in the figure represents the top view of the
vehicle where the tip of the arrow on the rectangle is towards
the front of the vehicle. This sensor configuration is used
to test the framework’s ability to detect possible collisions
resulting from the corresponding blind spots.

D. Vehicle Controller with Collision Avoidance

We have implemented a controller with basic forward
and side collision avoidance capabilities by merging two
controllers from the literature. For steering control, we used
the Stanford’s Racing Team’s approach [21] for the DARPA
Grand Challenge 2005. For the longitudinal control, we
used the model predictive convoy controller from Liu and
Ozguner [22]. A reactive planner generates a target path
based on the input target speed and the forward and side
distance sensor data. The generated target path and the input
target speed are supplied to the controller, which generates
force and steering inputs. We use this controller and the
simulation setup only for demonstrating our framework, and
we do not claim any performance or accuracy guarantees for
the controller or the simulator.

We describe the target speed for the VUT as an input
signal chosen by the testing algorithm in a predetermined
range [5, 15] m/s over the simulation time. The target lateral
position for the VUT is the midpoint of the right lane.
However, because the VUT controller has collision avoidance
capabilities, the target lateral positions for the vehicles are
updated during run-time based on the sensor data.

E. Motion Controller for the Dummy Vehicle

The target trajectory for the dummy vehicle is described
by two input functions for S-TaLiRo. One input function
is the target speed for the vehicle. We define the target
speed as a signal with a predefined number of control
points, i.e., the parameter τ described in Section III, equally
distributed over the simulation time. We set the lower and
upper limits, i.e., the domain for the parameter λ described
in Section III, for the target speed at each control point.
Piecewise cubic Hermite interpolating polynomial (pchip)
interpolation [23] function that is available in MATLAB [11]
is used for interpolation between the control points, i.e., the
U described in Section III. Thus, the target speed for the
dummy vehicle is a signal interpolated between the values
chosen by the test algorithm from a given range.

The other input function for the dummy vehicle describes
its target lateral position. We describe this input with respect
to the vehicle’s longitudinal position state instead of the
simulation time. We use 4 control points for this function

Fig. 2. Sensor Placement

where the first and the last
control points are located at
positions 0 m and 300 m in
the longitudinal axis. The lo-
cations for second and third
control points are chosen by
the test algorithm between these positions with a constraint
for the distance between two consecutive control points to
be at least 5 m. The value ranges for the control points are
the limits of the left lane for the first two control points
and the limits of right lane for the remaining control points.
This describes a trajectory that starts at the left lane and then
changes to the right lane. The lateral position inside the lanes
varies between the selected values by the test algorithm.

For the dummy vehicle, as opposed to the VUT, we have
implemented a PID controller for tracking the target speed in-
stead of the costly model predictive controller. As discussed
in subsection V-B, the controller for the dummy vehicle is
only used for roughly following the trajectory proposed by
the tester that will be used to challenge the VUT.

F. Experimental Results

As stated in subsection V-C, we intentionally created a
blind spot in the sensor setup for the VUT. During our
experiments, the framework successfully detected failure
cases caused by this weakness. Fig. 3 illustrates a near
collision where the VUT (at the bottom-right of the figure)
avoids a side collision in the first place and then collides with
the dummy vehicle when returning back to its lane. In this
case, the VUT first avoids the side collision by changing its
lateral position and slowing down. However, after avoiding
the side collision it loses track of the dummy vehicle because
of the blind spot. Hence, the VUT does not continue slowing
down although it should have. Furthermore, it starts making
the maneuver to return to its lane. As a consequence, it
barely touches the dummy vehicle at its rear-right corner.
The final parts of the vehicle trajectories are displayed as
traces behind the vehicles in Fig. 3. The second VUT, i.e.,
the one on bottom-left of the figure, is following the VUT
that had a collision. This VUT is far from the collision
scene, and it is not affected by the collision. There are
additional collisions detected by the framework, and all of
them are returned to the user for further analysis; however,
this was the collision with the minimum robustness value
returned by S-TaLiRo, which makes it an interesting case at
a boundary between safe and unsafe operation. The sampled
input parameters and the generated input function as the
target lateral position of the dummy vehicle leading to the
collision is given in Fig. 4. The τ parameters are defined

Fig. 3. History of the Vehicles Before a Collision Instance

Fig. 4. The Input for Target Lateral Position of the Dummy Vehicle

over the longitudinal position state of the dummy vehicle,
and the λ parameters are the target lateral positions for the
corresponding τ parameters. For this case study, the (τ, λ)
samples that led to the collision of concern are (0.0, 1.95),
(121.2, 1.83), (148.2,−1.15), (300.0,−1.11).

We have run our experiments on a Windows R© PC with an
Intel R© CoreTM i7-4790 CPU and 16GB RAM. A simulation
of 32 s of the described test setup takes 18 s physical time
on our setup. The above failure condition was detected in
100 simulations. Even though the convergence to the global
minimum robustness value is guaranteed with simulated an-
nealing [17], our stochastic approach provides no guarantee
on the number of simulations required to achieve the global
minimum. In general, the execution time of one simulation
in the proposed framework depends on the complexity of
the vehicle ODEs and controllers. The overall worst case
execution time for the framework grows linearly with the
maximum number of simulations chosen by the user.

VI. CONCLUSIONS

We proposed an approach for automatic simulation based
testing of autonomous vehicle controllers that is guided by
a robustness metric. We believe that the optimization over
robustness for test guidance is a promising approach for
testing cyber physical systems in general [24].

As a future work, we plan to extend the capabilities of
our framework by extracting the conditions leading to unsafe
behavior from the simulations and use them for training a
model for estimating the probability of future collisions.

The trajectory generation for dummy vehicles in our
framework is based on the boundaries described by the
user. The generated trajectories are then tracked by the user-
supplied controllers. Nagy et al. [25] propose a method for
generating trajectories for mobile robots that can be easily
tracked by a real vehicle. Although the final trajectories
followed by the controllers are realistic in our framework,
utilizing the approach described in that work can allow using
the trajectories directly without the need for a controller to
track them. As another future work, we plan to incorporate
such a method for trajectory generation.

REFERENCES

[1] K. Bengler, K. Dietmayer, B. Farber, M. Maurer, C. Stiller, and
H. Winner, “Three decades of driver assistance systems: Review
and future perspectives,” Intelligent Transportation Systems Magazine,
IEEE, vol. 6, no. 4, pp. 6–22, 2014.

[2] M. Maurer and H. Winner, Automotive systems engineering. Springer,
2013.

[3] K.-W. Han and C.-H. Chang, “Gain margins and phase margins for
control systems with adjustable parameters,” Journal of guidance,
control, and dynamics, vol. 13, no. 3, pp. 404–408, 1990.

[4] H. Winner, S. Hakuli, F. Lotz, and C. Singer, Handbook of Driver
Assistance Systems: Basic Information, Components and Systems for
Active Safety and Comfort. Springer, 2015.

[5] J. E. Stellet, M. R. Zofka, J. Schumacher, T. Schamm, F. Niewels,
and J. M. Zollner, “Testing of advanced driver assistance towards
automated driving: A survey and taxonomy on existing approaches and
open questions,” in Intelligent Transportation Systems (ITSC), 2015
IEEE 18th International Conference on. IEEE, 2015, pp. 1455–1462.

[6] T. Bock, M. Maurer, and G. Farber, “Validation of the vehicle in
the loop (VIL); a milestone for the simulation of driver assistance
systems,” in Intelligent Vehicles Symposium, 2007 IEEE. IEEE, 2007,
pp. 612–617.

[7] M. Althoff and J. M. Dolan, “Online verification of automated road
vehicles using reachability analysis,” Robotics, IEEE Transactions on,
vol. 30, no. 4, pp. 903–918, 2014.

[8] H. Abbas, G. Fainekos, S. Sankaranarayanan, F. Ivančić, and A. Gupta,
“Probabilistic temporal logic falsification of cyber-physical systems,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 12,
no. 2s, p. 95, 2013.

[9] M. Egerstedt and C. Martin, Control Theoretic Splines: Optimal
Control, Statistics, and Path Planning. Princeton University Press,
2009.

[10] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-
taliro: A tool for temporal logic falsification for hybrid systems,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2011, pp. 254–257.

[11] MATLAB, version 9.0.0 (R2016a). Natick, Massachusetts: The
MathWorks Inc., 2016.

[12] O. Michel, “WebotsTM: Professional mobile robot simulation,” arXiv
preprint cs/0412052, 2004.

[13] Mechanical Simulation, “CarSim,” 2016. [Online]. Available:
http://www.carsim.com/

[14] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-
ifications for continuous-time signals,” Theoretical Computer Science,
vol. 410, no. 42, pp. 4262–4291, 2009.

[15] J. C. Hayward, “Near-miss determination through use of a scale of
danger,” Highway Research Record, no. 384, 1972.

[16] J. Ward, G. Agamennoni, S. Worrall, and E. Nebot, “Vehicle collision
probability calculation for general traffic scenarios under uncertainty,”
in Intelligent Vehicles Symposium Proceedings, 2014 IEEE. IEEE,
2014, pp. 986–992.

[17] H. Abbas and G. Fainekos, “Convergence proofs for simulated an-
nealing falsification of safety properties,” in Communication, Control,
and Computing (Allerton), 2012 50th Annual Allerton Conference on.
IEEE, 2012, pp. 1594–1601.

[18] K. Zhang, J. Sprinkle, and R. G. Sanfelice, “A hybrid model predictive
controller for path planning and path following,” in Proceedings of the
ACM/IEEE Sixth International Conference on Cyber-Physical Systems.
ACM, 2015, pp. 139–148.

[19] E. Narby, “Modeling and estimation of dynamic tire properties,”
Master’s thesis, Linkopings Universitet, Linkoping, 2006.

[20] G. Walsh, D. Tilbury, S. Sastry, R. Murray, and J.-P. Laumond, “Sta-
bilization of trajectories for systems with nonholonomic constraints,”
Automatic Control, IEEE Transactions on, vol. 39, no. 1, pp. 216–222,
1994.

[21] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun,
“Autonomous automobile trajectory tracking for off-road driving:
Controller design, experimental validation and racing,” in American
Control Conference, 2007, pp. 2296–2301.

[22] P. Liu and U. Ozguner, “Predictive control of a vehicle convoy con-
sidering lane change behavior of the preceding vehicle,” in American
Control Conference (ACC), 2015. IEEE, 2015, pp. 4374–4379.

[23] F. N. Fritsch and R. E. Carlson, “Monotone piecewise cubic inter-
polation,” SIAM Journal on Numerical Analysis, vol. 17, no. 2, pp.
238–246, 1980.

[24] J. Kapinski, J. Deshmukh, X. Jin, H. Ito, and K. Butts, “Simulation-
guided approaches for verification of automotive powertrain control
systems,” in 2015 American Control Conference (ACC). IEEE, 2015,
pp. 4086–4095.

[25] B. Nagy and A. Kelly, “Trajectory generation for car-like robots using
cubic curvature polynomials,” Field and Service Robots, vol. 11, 2001.

