
Experience Report: Application of Falsification
Methods on the UxAS System?

Cumhur Erkan Tuncali1, Bardh Hoxha2, Guohui Ding3, Georgios Fainekos1, and
Sriram Sankaranarayanan3

1. Arizona State Univ., {etuncali,fainekos}@asu.edu 2. Southern Illinois Univ.,
{bhoxha}@siu.edu, 3. Univ. of Colorado, Boulder, {firstname.lastname}@colorado.edu

Abstract. In this report, we present our experiences in applying falsification
methods over the Unmanned Systems Autonomy Services (UxAS) system. UxAS
is a collection of software modules that enables complex mission planning for
multiple vehicles. To test the system, we utilized the tool S-TaLiRo to generate
mission scenarios for both UxAS and the underlying vehicle simulators, with the
goal of finding behaviors which do not meet system specifications.

1 Introduction

Testing and verification of Cyber-Physical Systems (CPS) with respect to their func-
tional or safety requirements is a critical and difficult problem. The difficulty for testing
mainly arises from the fact that the generally large input and state spaces of most com-
plex systems make it challenging to identify the values of the inputs and the initial
system states which will lead to unexpected behaviors.

Among different testing methodologies, requirements-based boundary-value testing
is an approach where the system is tested for the boundary values extracted from the
requirements. Although it is a very widely used approach in the industry for testing
safety-critical systems, it does not cover the input space of the CPS well. Hence, it may
fail to find the failure cases which are not around the boundaries of the requirements.
On the other hand, fuzzing [10], where the tests are randomly sampled from the input
space of the system, provides a better coverage of the input space. However, the input
space is generally infinitely large, especially when it is on real-valued inputs. If an
unexpected behavior for the system is caused by a small region in the input space,
then, in general, there is a very small probability to hit that small region with randomly
generated test cases. Optimization-based test generation/falsification approaches utilize
global optimization methods to guide the tests towards a possibly small region in the
input space that lead to an incorrect system behavior. Falsification can be defined as the
task of discovering counterexamples, i.e., the system behaviors that do not satisfy the
given safety or functional requirements.

In this work, we use optimization-based falsification for identifying the conditions
that cause an unexpected system behavior. In particular, we used S-TALIRO which is

? This research was supported by the Summer of Innovation 2017 program organized by AFRL
and Wright Brothers Institute in Dayton, OH.



a robustness-guided automatic test case generation tool [4, 9]. S-TALIRO simulates the
system with generated input signals and computes a robustness value for the simulated
system trajectory. The robustness value is basically a measure of how close is a system
trajectory to a set of unsafe behaviors [5]. While a positive robustness value indicates
that the trajectory satisfies the system requirements, a negative robustness value means
that the trajectory does not satisfy (falsify) at least one system requirement. After com-
puting the robustness value, S-TALIRO utilizes stochastic optimization techniques [8,
1] to update test cases in order to minimize the robustness value. The search continues
until it finds a negative robustness value, i.e., a system trajectory falsifying (failing to
satisfy) the requirements, or until it exceeds the maximum number of simulations. The
stochastic nature of S-TALIRO helps it to obtain a better coverage of the input space of
the system compared to the boundary-value testing, while the robustness-guided search
approach helps it to smartly guide the tests towards risky areas. This allows exploring
the failure cases with a smaller number of simulations compared to random testing, or
given a finite time, finding more failure cases than the random testing.

2 Problem Statement

UxAS is a publicly available task automation software for Unmanned Aerial Vehi-
cles (UAVs), designed as a set of modular services by the US Air Force Research Lab-
oratory (AFRL) [3]. UxAS computes optimal or close-to-optimal execution plans for a
given set of tasks for multiple UAVs and allows cooperative decision making between
the UAVs. The search and surveillance tasks UxAS can handle include point inspec-
tion, line (path) search, area search, spiral search and sector search as described by
Kingston et al [6]. The UxAS distribution contains some example scenarios that can be
used as a base for these tasks. However, scenarios involve numerous parameters that
are specific to an individual mission. Additionally, the missions are carried out under
operating region constraints that describe Keep In regions that a particular aircraft must
always remain inside and Keep Out regions that an aircraft must keep out of. Finally,
the dynamics of the flight are subjected to wind and GPS disturbances.

Formal System Requirements: In order to mathematically evaluate whether a trajectory
of the system satisfies its requirements, we need formal, mathematical representations
of the system requirements. We utilize Metric Temporal Logic (MTL) specifications
to formally express the system requirements [7]. MTL extends common temporal op-
erators such as Finally, Globally and Until with time intervals that restrict how these

Table 1. Examples of parameters describing various mission types in UxAS.

Mission Type Parameters

Point Search GPS Coordinate, view angles distance bounds

Line Search Line coordinates, view angles max distance

Area Search Region, desired resolution, angles



UXAS

S-TALIRO

TEST INITIALIZATION

AUTONOMY MONITOR

TRAJECTORY RECORDER

AMASE

SIMULATOR

ROBUSTNESS

CALCULATION

GLOBAL

OPTIMIZATION

SCENARIO DESCR.

MTL REQUIREMENTS

Fig. 1. An overview of the various components involved in the test generation setup for UxAS

operators are applied to a timed trace. We refer the reader to the original paper by Koy-
mans [7] or our earlier work [1] for a detailed exposition of MTL. Using MTL, we can
eliminate ambiguity in the requirements, and we can mathematically reason about the
system behavior with respect to its requirements.

Thus, the overall problem is as follows:
INPUTS: Mission parameter ranges, operating region parameter ranges, wind and GPS
disturbance parameters, additional MTL requirements.
OUTPUT: Concrete parameter values and operating regions, wind and GPS disturbance
patters so that the resulting plan executions violate mission requirements, operating
region requirements or additional MTL constraints.

3 Test Generation for UxAS

A basic overview of our test generation environment architecture is illustrated in Fig. 1.
In this section, we will briefly explain the main blocks of this environment.

AMASE Simulator OpenAMASE is an openly available aircraft dynamics simulation
toolset developed by the US Air Force Research Laboratory [2]. It communicates with
UxAS through a middleware interface and implements simulators for UAV platforms
and disturbances such as wind. We have additionally incorporated GPS disturbances
into this framework. OpenAMASE is initialized by providing descriptions of the var-
ious air vehicles and their initial positions. Next, the UxAS system provides a series
of waypoints to the aircrafts to follow. AMASE roughly simulates the behavior of the
Piccolo autopilot over these waypoints and periodically publishes aircraft positions and
headings back to UxAS as the simulation progresses.



Scenario Description Scenarios are described externally through an XML file that is
read and transmitted to the UxAS system through a middleware layer. The message
to the UxAS system contains mission information that includes aircraft descriptions
and configurations, initial aircraft states, target tasks, Keep In/Out zone parameters and
weather conditions which can change during the simulation. In our approach, we mainly
generate new test cases by modifying the parameters defined in these messages. We add
additional fields to the XML structure to define the ranges of the parameters.

S-TALIRO/UxAS Interface The testing process is started by a Matlab script. This
startup script reads the scenario description XML files and extracts the ranges for the
variable parameters. It further extracts the information on the path search tasks and the
operating zones. If there is a path search task to be randomized, a random path for the
task is generated. Similarly, for any keep out zone, it randomly places the Keep Out
zone around the path such that the keep out zone does not intersect with the path. The
MTL requirements for the system are also specified in the startup script.

After basic configuration is read, S-TALIRO is called with the parameter ranges,
the ranges for the coordinates of the Keep Out Zones and the system requirements.
Fig. 1 gives an overview of our test generation approach. After it starts, S-TALIRO
randomly samples from the parameter ranges, and communicates with the test services
located in the UxAS over TCP/IP sockets to send the sampled parameter values and
to receive the system trajectory at the end of the simulation. The received trajectories
are used for computing the robustness value for the current execution. The sampled
values are updated, and the simulation is executed again until a negative robustness
value is obtained or until the user-defined maximum number of simulation executions
is reached. In this case study, we utilize the Simulated Annealing optimization method
to search for parameters that minimize the robustness value.

Autonomy monitors The autonomy monitoring service is implemented inside UxAS to
monitor the positions of vehicles over time and decide if a task has completed or failed.
Furthermore, it computes the robustness value of the trajectory with respect to the task
requirements. First, we define specific monitors for each type of task and operating
region constraints in our overall mission specification. The monitors receive periodic
timestamped messages containing the positions and headings of the various airplanes.
It then updates the current completion status for each task and operating region con-
straints. It then publishes success or failure messages along with robustness values to
S-Taliro.

We now briefly describe the operation of S-Taliro to generate test cases. This in-
cludes randomized generation of paths for various search tasks and the random genera-
tion of operation zone constraints.

Random Path Generation A random path is specified by its starting and ending points:
pstart , pend , minimum and maximum distances between various segments of the path
dmin,dmax, maximum angular difference between segments θmax, and the standard devia-
tion of the angle difference, θσ . We generate a list of coordinates p0 : pstart , . . . , pN : pend
with the line joining the coordinates specifying the overall path.



Initially, the partial path just consists of pstart . We then sample a point at a sample
distance dsample and angle θsample. dsample is chosen randomly from the given range, and
θsample is chosen at random with the mean value centered around the line joining the
last point to the end point pend and specified standard deviation. This process continues
until the last point in the path so far is close enough to the endpoint. At this stage, the
point pend is added to the list and the process terminates. The green paths in Fig. 2 are
generated by this algorithm for a path search task.

Scenario Description Scenarios are described externally through an XML file that is
read and transmitted to the UxAS system through a middleware layer. The message
to the UxAS system contains mission information that includes aircraft descriptions
and configurations, initial aircraft states, target tasks, Keep In/Out zone parameters and
weather conditions which can change during the simulation. In our approach, we mainly
generate new test cases by modifying the parameters defined in these messages. We add
additional fields to the xml structure to define the ranges of the parameters.

Random Placement of Keep Out Zone A keep out zone specifies a region that an air-
craft cannot enter during the mission. To test the system, we randomly place Keep Out
zones ensuring that the overall mission remains feasible in doing so: i.e, no keep out
zone intersects a path or target point in the mission specification. Our approach starts by
computing the interval hull of the generated path and sampling a point in the hull. We
then place the keep out region R at this point and test for an intersection with the path. If
an intersection occurs, we then find a point of intersection and choose a direction along
with we translate the region R by the minimum possible distance to move the current
intersection point outside the region R. We repeat this process until we are free of in-
tersections. However, this process need not terminate in all cases. To aid termination,
we place maximum limits on the number of iterations and restart afresh. Examples of
randomly generated paths (in green) with a randomly placed keep out zones (in red) are
shown in Fig. 2.

3.1 Case-Study

The scenario in our case study involves three UAVs with ID 400, 500 and 600, for
which we denote the positions by pV 400, pV 500, pV 600. A line search task arrives, and
UxAS generates an optimal plan for one of the UAVs to perform the task of obtaining
surveillance video that covers the path to be searched. We also add a keep out zone Z1
at random such that it does not intersect with the search path. Since the aircrafts are not
supposed to fly over keep out zones, we require that “Whenever any of UAV 400, 500
or 600 enters the keep out zone Z1, it should exit the zone in 10 seconds”. The MTL
representation for this requirement can be given as

�(r1 =⇒ ♦[0,10]¬r1)∧�(r2 =⇒ ♦[0,10]¬r2)∧�(r3 =⇒ ♦[0,10]¬r3),

where r1 is a predicate which evaluates to True (>) when the UAV 400 enters the keep
out zone Z1, i.e., r1 := pV 400 ∈ Z1. Similarly, r2 := pV 500 ∈ Z1 and r3 := pV 600 ∈ Z1.

We leave the shape of the path to be searched, the nominal speed values for each of
the aircrafts, wind speed and wind directions that can change 6 times over the simulation



Fig. 2. Randomly generated search paths and Keep Out zones along with simulations: (left) sat-
isfying requirements and (right) violation.

time as the variable parameters of the scenario. We use OpenAMASE to simulate the
aircrafts. In our test generation approach, we randomly sample a path as the line search
task and use S-TALIRO to search over the variable scenario parameters to discover the
system behaviors that do not satisfy the MTL specification which is given above. The
system under test can be considered as the UxAS tool together with the UAVs in the
scenario.

The aircrafts start from their given initial positions. If an aircraft never enters zone Z1
during the simulation, then the robustness value (for this example) is the minimum dis-
tance between the aircraft trajectory and the keep out zone boundaries. If an aircraft
actually enters zone Z1, then the robustness value for the violation reduces to how far
inside Z1 the UAV flies beyond the 10 second time limit. Moreover, in the latter case,
the robustness value is negative indicating that the requirement has been violated.

In the execution example given in Fig. 2 (left) the green path is the one to be
searched and the purple path connects waypoints generated by UxAS. In this case, the
robustness value is the length represented by the yellow arrow which is the point where
the aircraft comes closest to the keep out zone, as illustrated by the yellow arrow.

In our case study, S-TALIRO discovered cases where UxAS generates waypoints
inside a keep out zone for a path search task and the vehicles fly into this zone (see
Fig. 2 (right)) and stay inside the zone for more than 10 seconds which is against the
system requirements.

4 Conclusion and Future Work

We have developed a framework which can be used to automatically generate test cases
which can discover scenarios that lead to unexpected behaviors. Although the level of
automation can be increased, we have automated most of the process by extracting data
from existing scenario files. This ability would save human effort spent on generating
test cases. Furthermore, because the automatic test generation framework does not have
a developer’s / tester’s bias, it can discover unforeseen conditions leading to failure.

As a future work, we propose to use Simulink aircraft simulation models to apply
coverage guided test generation techniques. Furthermore, we plan to utilize simplified



system dynamics for the aircrafts and the environment to compute functional gradient
descent directions as described in our earlier work [11].

References

1. H. Abbas, G. Fainekos, S. Sankaranarayanan, F. Ivančić, and A. Gupta. Probabilistic tempo-
ral logic falsification of cyber-physical systems. ACM Transactions on Embedded Computing
Systems (TECS), 12(2s):95, 2013.

2. Air Force Research Laboratory, Aerospace System Directorate, Power and Control Division.
OpenAMASE, Aerospace Multi-agent Simulation Environment, Dec. 2017. Available at
https://github.com/afrl-rq/OpenAMASE/.

3. Air Force Research Laboratory, Aerospace System Directorate, Power and Control Division.
OpenUXAS, Project for multi-UAV cooperative decision making, Dec. 2017. Available at
https://github.com/afrl-rq/OpenUxAS.

4. Y. Annpureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan. S-TaLiRo: A tool for
temporal logic falsification for hybrid systems. In TACAS, volume 6605, pages 254–257.
Springer, 2011.

5. G. E. Fainekos and G. J. Pappas. Robustness of temporal logic specifications for continuous-
time signals. Theoretical Computer Science, 410(42):4262–4291, 2009.

6. D. Kingston, S. Rasmussen, and L. Humphrey. Automated UAV tasks for search and surveil-
lance. In Control Applications (CCA), 2016 IEEE Conference on, pages 1–8. IEEE, 2016.

7. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems,
2(4):255–299, 1990.

8. T. Nghiem, S. Sankaranarayanan, G. Fainekos, F. Ivancić, A. Gupta, and G. J. Pappas.
Monte-carlo techniques for falsification of temporal properties of non-linear hybrid systems.
In HSCC ’10, pages 211–220, New York, NY, USA, 2010. ACM.

9. S-TaLiRo, Dec. 2017. Available at https://sites.google.com/a/asu.edu/s-taliro/s-taliro.
10. M. Sutton, A. Greene, and P. Amini. Fuzzing: brute force vulnerability discovery. Pearson

Education, 2007.
11. C. E. Tuncali, S. Yaghoubi, T. P. Pavlic, and G. Fainekos. Functional gradient descent op-

timization for automatic test case generation for vehicle controllers. In Automation Science
and Engineering (CASE), 2017 IEEE International Conference on. IEEE, 2017.


